ترغب بنشر مسار تعليمي؟ اضغط هنا

ASCA observations of high redshift quasars

59   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ASCA observations of 4 high redshift radio--loud quasars with 1.44$<$z$<$3.21 are presented. The spectral analysis for three of them (PKS 0332-403, PKS 0537-286, PKS 2149-306) reveals that their X-ray continuum emission is well represented by a simple power--law model plus absorption with photon indices of $Gamma =1.92^{+0.30}_{-0.20}$ (PKS 0332-403), $Gamma =1.63^{+0.14}_{-0.12}$ (PKS 0537-286) and $Gamma =1.57pm 0.05$ (PKS 2149-306). The fourth and most distant object, PKS 1614+051 at z=3.21, was detected, but a detailed spectral analysis is impossible due to the small number of photons. We find evidence for excess absorption above the Galactic $N_H$--value in the ASCA data of PKS 2149-306, which is not confirmed by the ROSAT All-Sky Survey PSPC spectrum of this source. This could probably be due to variable absorption. The ROSAT spectrum of PKS 0537-286, deduced from a 10 ksec pointed PSPC observation, is consistent with the ASCA results. Thermal bremsstrahlung models also give acceptable fits to the ASCA data with best fit (rest frame) temperatures of 10.4, 33.5 and 45.8 keV for PKS 0332-403, PKS 0537-286 and PKS 2149-306, respectively. More complicated models for the X-ray continuum are not required, in particular, tight upper limits on the strength of the Fe-K emission line are given. The broad band spectral energy distributions from the radio to the $gamma$-rays are presented and discussed.

قيم البحث

اقرأ أيضاً

118 - R.M. Sambruna 2007
We report on Swift observations of four z>2 radio-loud quasars (0212+735, 0537-286, 0836+710, and 2149-307), classified as blazars. The sources, well-known emitters at soft-medium X-rays, were detected at >5sigma with the BAT experiment in 15-150 keV . No flux variability was detected within the XRT and BAT exposures, with the exception of 0836+710 which shows an increase of a factor 4 of the 15-150 keV flux on a timescale of one month. The 0.3-10 keV spectra are well fitted by power law models, with rather hard continua (photon indices Gamma_XRT ~1.3-1.5); similarly, the 15-150 keV spectra are described by power laws with Gamma_BAT ~1.3-1.8. The XRT data exhibit spectral curvature, which can be modeled either in terms of excess absorption along the line of sight, or a downward-curved broken power law. In the former case, if the excess N_H is at the rest-frame of the source, columns of N_H^z=(0.3-6)x10^22 cm^-2 are measured. Modeling of the SEDs of the four quasars shows that the emission at the higher frequencies, >~ 10^16 Hz, is dominated by the jet, while the steep optical-to-UV continua, observed with the UVOT, can be attributed to thermal emission from the accretion disk. The disk luminosity is between 1% and 10% the jet power, similar to other powerful blazars.
High redshift quasars (HZQs) with redshifts of z >~ 6 are so rare that any photometrically-selected sample of sources with HZQ-like colours is likely to be dominated by Galactic stars and brown dwarfs scattered from the stellar locus. It is impractic al to reobserve all such candidates, so an alternative approach was developed in which Bayesian model comparison techniques are used to calculate the probability that a candidate is a HZQ, P_q, by combining models of the quasar and star populations with the photometric measurements of the object. This method was motivated specifically by the large number of HZQ candidates identified by cross-matching the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) to the Sloan Digital Sky Survey (SDSS): in the ~1900 deg^2 covered by the LAS in the UKIDSS Seventh Data Release (DR7) there are ~10^3 real astronomical point-sources with the measured colours of the target quasars, of which only ~10 are expected to be HZQs. Applying Bayesian model comparison to the sample reveals that most sources with HZQ-like colours have P_q <~ 0.1 and can be confidently rejected without the need for any further observations. In the case of the UKIDSS DR7 LAS, there were just 88 candidates with P_q >= 0.1; these object were prioritized for reobservation by ranking according to P_q (and their likely redshift, which was also inferred from the photometric data). Most candidates were rejected after one or two (moderate depth) photometric measurements by recalculating P_q using the new data. That left seven confirmed HZQs, three of which were previously identified in the SDSS and four of which were new UKIDSS discoveries. The high efficiency of this Bayesian selection method suggests that it could usefully be extended to other HZQ surveys (e.g. searches by Pan-STARRS or VISTA) as well as to other searches for rare objects.
Context:Quasars radiating at extreme Eddington ratios (xA) are likely a prime mover of galactic evolution and have been hailed as potential distance indicators. Their properties are still scarcely known. Aims:We test the effectiveness of the select ion criteria defined on the 4D Eigenvector 1 (4DE1) for identifying xA sources. We provide a quantitative description of their UV spectra in the redshift range 2<z<2.9. Methods:19 extreme quasar candidates were identified using 4DE1 selection criteria applied to SDSS spectra: AlIII1860/SiIII]1892>0.5 and CIII]1909/SiIII]1892<1. The emission line spectra was studied using multicomponent fits of deep spectroscopic observations obtained with the OSIRIS-GTC. Results:Spectra confirm that almost all of these quasars are xA sources with very similar properties. We provide spectrophotometric and line profile measurements for the SiIV1397+OIV]1402, CIV1549+HeII1640, and the 1900A blend composed by AlIII1860, SiIII]1892, FeIII and a weak CIII]1909. The spectra can be characterized as very low ionization (logU~-3), a condition that explains the significant FeIII emission. CIV1549 shows low equivalent width (<30 A for the most sources), and high or extreme blueshift amplitudes (-5000<c(1/2)<-1000 kms-1). Weak-lined quasars appear as extreme xA quasars and not as an independent class. The CIV1549 high amplitude blueshifts coexists in all cases save one with symmetric and narrower AlIII and SiIII] profiles. Estimates of the Eddington ratio using the AlIII FWHM as a virial broadening estimator are consistent with the ones of a previous xA sample. Conclusions:It is now feasible to assemble large samples of xA quasars from the latest data releases of the SDSS. We provide evidence that AlIII1860 could be associated with a low-ionization virialized sub-system, supporting previous suggestions that AlIII is a reliable virial broadening estimator.
The detection of powerful near-infrared emission in high redshift (z>5) quasars demonstrates that very hot dust is present close to the active nucleus also in the very early universe. A number of high-redshift objects even show significant excess emi ssion in the rest frame NIR over more local AGN spectral energy distribution (SED) templates. In order to test if this is a result of the very high luminosities and redshifts, we construct mean SEDs from the latest SDSS quasar catalogue in combination with MIR data from the WISE preliminary data release for several redshift and luminosity bins. Comparing these mean SEDs with a large sample of z>5 quasars we could not identify any significant trends of the NIR spectral slope with luminosity or redshift in the regime 2.5 < z < 6 and 10^45 < nuL_nu(1350AA) < 10^47 erg/s. In addition to the NIR regime, our combined Herschel and Spitzer photometry provides full infrared SED coverage of the same sample of z>5 quasars. These observations reveal strong FIR emission (L_FIR > 10^13 L_sun) in seven objects, possibly indicating star-formation rates of several thousand solar masses per year. The FIR excess emission has unusally high temperatures (T ~ 65 K) which is in contrast to the temperature typically expected from studies at lower redshift (T ~ 45 K). These objects are currently being investigated in more detail.
61 - Jill Bechtold 2002
We observed 17 optically-selected, radio-quiet high-redshift quasars with the Chandra Observatory ACIS, and detected 16 of them. The quasars have redshift between 3.70 and 6.28 and include the highest redshift quasars known. When compared to low-reds hift quasars observed with ROSAT, these high redshift quasars are significantly more X-ray quiet. We also find that the X-ray spectral index of the high redshift objects is flatter than the average at lower redshift. These trends confirm the predictions of models where the accretion flow is described by a cold, optically-thick accretion disk surrounded by a hot, optically thin corona, provided the viscosity parameter alpha >= 0.02. The high redshift quasars have supermassive black holes with masses ~10^{10} M_{sun}, and are accreting material at ~0.1 the Eddington limit. We detect 10 X-ray photons from the z=6.28 quasar SDS 1030+0524, which may have a Gunn-Peterson trough and be near the redshift of reionization of the intergalactic medium. The X-ray data place an upper limit on the optical depth of the intergalactic medium tau(IGM) < 10^6, compared to the lower limit from the spectrum of Lyalpha and Lybeta, which implies tau(IGM) > 20.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا