ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic observations of eight supernovae at intermediate redshift

126   0   0.0 ( 0 )
 نشر من قبل Christophe Balland
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectra of six Type Ia and two Type II supernovae obtained in June 2002 at the William Herschel Telescope during a search for Type Ia supernovae (SNIa) at intermediate redshift. Supernova type identification and phase determination are performed using a fitting technique based on a Xi2 minimization against a series of model templates. The spectra range from z=0.033 to z=0.328, including one spectroscopically underluminous SNIa at z=0.033. This set of spectra significantly increases the sample of well-observed type SNIa supernovae available in the range 0.15< z <0.35. Together with the twelve supernovae observed by our team in 1999 in the same redshift range, they form an homogeneous sample of seventeen type Ia supernovae with comparable signal-to-noise ratio and regular phase sampling in a still largely unexplored region of the redshift space.

قيم البحث

اقرأ أيضاً

We present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope (C FHT), and the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). These SN surveys specifically targeted z>1 Type Ia supernovae (SNe Ia). From the spectra of 39 candidates, we obtain redshifts for 32 candidates and spectroscopically identify 7 active candidates as probable SNe Ia, including one at z=1.35, which is the most distant SN Ia to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates are identified as likely SNe Ia from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe Ia, either being SNe of another type or active galactic nuclei. When SNe Ia are observed within a week of maximum light, we find that we can spectroscopically identify most of them up to z=1.1. Beyond this redshift, very few candidates were spectroscopically identified as SNe Ia. The current generation of super red-sensitive, fringe-free CCDs will push this redshift limit higher.
118 - C. Balland , M. Mouchet , R. Pain 2005
We present spectra of twelve Type Ia supernovae obtained in 1999 at the William Herschel Telescope and the Nordic Optical Telescope during a search for Type Ia supernovae (SN Ia) at intermediate redshift. The spectra range from z=0.178 to z=0.493, in cluding five high signal-to-noise ratio SN Ia spectra in the still largely unexplored range 0.15 < z < 0.3. Most of the spectra were obtained before or around restframe B-band maximum light. None of them shows the peculiar spectral features found in low-redshift over- or under-luminous SN Ia. Expansion velocities of characteristic spectral absorption features such as SiII at 6355 angs., SII at 5640 angs. and CaII at 3945 angs. are found consistent with their low-z SN Ia counterparts.
We present multi-band light curves and distances for five type Ia supernovae at intermediate redshifts, 0.18<z<0.27. Three telescopes on the Canary Island of La Palma, INT, NOT and JKT, were used for discovery and follow-up of type Ia supernovae in t he g and r filters. Supernova fluxes were measured by simultaneously fitting a supernova and host galaxy model to the data, and then calibrated using star catalogues from the Sloan Digital Sky Survey. The light curve peak luminosities, corrected for light curve shape and colour, are consistent with the expectations for a flat LambdaCDM universe at the 1.5-sigma level. One supernova in the sample, SN1999dr, shows surprisingly large reddening, considering that it is both located at a significant distance from the core of its host (~4 times the fitted exponential radius) and that the galaxy can be spectroscopically classified as early-type with no signs of ongoing star formation.
We present VLT FORS1 and FORS2 spectra of 39 candidate high-redshift supernovae that were discovered as part of a cosmological study using Type Ia supernovae (SNe Ia) over a wide range of redshifts. From the spectra alone, 20 candidates are spectrall y classified as SNe Ia with redshifts ranging from z=0.212 to z=1.181. Of the remaining 19 candidates, 1 might be a Type II supernova and 11 exhibit broad supernova-like spectral features and/or have supernova-like light curves. The candidates were discovered in 8 separate ground-based searches. In those searches in which SNe Ia at z ~ 0.5 were targeted, over 80% of the observed candidates were spectrally classified as SNe Ia. In those searches in which SNe Ia with z > 1 were targeted, 4 candidates with z > 1 were spectrally classified as SNe Ia and later followed with ground and space based observatories. We present the spectra of all candidates, including those that could not be spectrally classified as supernova.
We present an unprecedented spectroscopic survey of the CaII triplet + OI for a sample of 14 luminous ($-$26 $gtrsim$ M$_V$ $gtrsim$ $-$29), intermediate redshift (0.85 $lesssim$ $z$ $lesssim$ 1.65) quasars. The ISAAC spectrometer at ESO VLT allowed us to cover the CaII NIR spectral region redshifted into the H and K windows. We describe in detail our data analysis which enabled us to detect CaII triplet emission in all 14 sources (with the possible exception of HE0048-2804) and to retrieve accurate line widths and fluxes of the triplet and OI $lambda$8446. The new measurements show trends consistent with previous lower $z$ observations, indicating that CaII and optical FeII emission are probably closely related. The ratio between the CaII triplet and the optical FeII blend at $lambda$4570 $AA$ is apparently systematically larger in our intermediate redshift sample relative to a low-$z$ control sample. Even if this result needs a larger sample for adequate interpretation, higher CaII/optical FeII should be associated with recent episodes of star formation in the intermediate redshift quasars and, at least in part, explain an apparent correlation of CaII triplet equivalent width with $z$ and $L$. The CaII triplet measures yield significant constraints on the emitting region density and ionization parameter, implying CaII triplet emission from log n$_H$ $gtrsim$ 11 [cm$^{-3}$] and ionization parameter log $U$ $lesssim$ 1.5. Line width and intensity ratios suggest properties consistent with emission from the outer part of a high density broad line region (a line emitting accretion disk?).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا