ﻻ يوجد ملخص باللغة العربية
We use a sample of 115 galaxy clusters at 0.1<z<1.3 observed with Chandra ACIS-I to investigate the relation between luminosity and Yx (the product of gas mass and temperature). The scatter in the relation is dominated by cluster cores, and a tight LY relation (11% intrinsic scatter in Lx) is recovered if sufficiently large core regions (0.15R500) are excluded. The intrinsic scatter is well described by a lognormal distribution and the relations are consistent for relaxed and disturbed/merging clusters. We investigate the LY relation in low-quality data (e.g. for clusters detected in X-ray survey data) by estimating Lx from soft band count rates, and find that the scatter increases somewhat to 21%. We confirm the tight correlation between Yx and mass and the self-similar evolution of that scaling relation out to z=0.6 for a subset of clusters in our sample with mass estimates from the literature. This is used to estimate masses for the entire sample and hence measure the LM relation. We find that the scatter in the LM relation is much lower than previous estimates, due to the full removal of cluster cores and more robust mass estimates. For high-redshift clusters the scatter in the LM relation remains low if cluster cores are not excluded. These results suggest that cluster masses can be reliably estimated from simple luminosity measurements in low quality data where direct mass estimates, or measurements of Yx are not possible. This has important applications in the estimation of cosmological parameters from X-ray cluster surveys.
The cosmological constraining power of modern galaxy cluster catalogs can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster populat
We introduce a new test to study the Cosmological Principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends o
We present comparison of X-ray proxies for the total cluster mass, including the spectral temperature (Tx), gas mass measured within r500 (Mg), and the new proxy, Yx, which is a simple product of Tx and Mg and is related to the total thermal energy o
This presentation is a Moriond version of our recent paper (Kravtsov, Vikhlinin & Nagai astro-ph/0603205) where we discussed X-ray proxies for the total cluster mass, including the spectral temperature (Tx), gas mass measured within r500 (Mg), and th
Determining the scaling relations between galaxy cluster observables requires large samples of uniformly observed clusters. We measure the mean X-ray luminosity--optical richness (L_X--N_200) relation for an approximately volume-limited sample of mor