ترغب بنشر مسار تعليمي؟ اضغط هنا

The detectability of baryonic acoustic oscillations in future galaxy surveys

65   0   0.0 ( 0 )
 نشر من قبل Raul Angulo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Angulo




اسأل ChatGPT حول البحث

We assess the detectability of baryonic acoustic oscillations (BAO) in the power spectrum of galaxies using ultra large volume N-body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (nonlinear fluctuation growth, peculiar motions, nonlinear and scale dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box ($=2.41 h^{-3}{rm Gpc}^{3}$). We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, $s$, and, hence constrain the dark energy equation of state parameter, $w$ (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of $Delta s/s = 0.5-0.7 % $ (corresponding to $Delta w approx 2-3% $), which is competitive with the proposed WFMOS survey ($Delta s/s = 1% $ $Delta w approx 4 % $). Achieving $Delta w le 1% $ using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.

قيم البحث

اقرأ أيضاً

We show that it is possible to build effective matter density power spectra in tomographic cosmic shear observations that exhibit the Baryonic Acoustic Oscillations (BAO) features once a nulling transformation has been applied to the data. The precis ion with which the amplitude and position of these features can be reconstructed is quantified in terms of sky coverage, intrinsic shape noise, median source redshift and number density of sources. BAO detection in Euclid or LSST like wide surveys will be possible with a modest signal-to-noise ratio. It would improve dramatically for slightly deeper surveys.
178 - Rennan Barkana 2010
Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark matter across large regions of the Universe. We show that the associated variation in the mass-to-light ratio of galaxies should generate an oscillatory, scale-depend ent bias of galaxies relative to the underlying distribution of dark matter. A measurement of this effect would calibrate the dependence of the characteristic mass-to-light ratio of galaxies on the baryon mass fraction in their large scale environment. This bias, though, is unlikely to significantly affect measurements of BAO peak positions.
Oscillations in the baryon-photon fluid prior to recombination imprint different signatures on the power spectrum and correlation function of matter fluctuations. The measurement of these features using galaxy surveys has been proposed as means to de termine the equation of state of the dark energy. The accuracy required to achieve competitive constraints demands an extremely good understanding of systematic effects which change the baryonic acoustic oscillation (BAO) imprint. We use 50 very large volume N-body simulations to investigate the BAO signature in the two-point correlation function. The location of the BAO bump does not correspond to the sound horizon scale at the level of accuracy required by future measurements, even before any dynamical or statistical effects are considered. Careful modelling of the correlation function is therefore required to extract the cosmological information encoded on large scales. We find that the correlation function is less affected by scale dependent effects than the power spectrum. We show that a model for the correlation function proposed by Crocce & Scoccimarro (2008), based on renormalised perturbation theory, gives an essentially unbiased measurement of the dark energy equation of state. This means that information from the large scale shape of the correlation function, in addition to the form of the BAO peak, can be used to provide robust constraints on cosmological parameters. The correlation function therefore provides a better constraint on the distance scale (~50% smaller errors with no systematic bias) than the more conservative approach required when using the power spectrum (i.e. which requires amplitude and long wavelength shape information to be discarded).
We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey g alaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at group-integrated cold baryonic mass M_coldbary ~ 10^11 Msun. The SAM, however, has significantly fewer groups at the transition mass ~ 10^11 Msun and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ~2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of M_halo ~ 10^11.4-12 Msun, which we label nascent groups. Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometer Array (SKA) instrument, makes it undetectable at redshifts $zgtrsim1$. We however demonstrate that the BAO peak can still be detected in the radial 21cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21cm power spectrum. We systematically investigate the signal-to-noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by $sim5%$ with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to $sim65%$ at $zsim2-3$. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of $sim20%$ in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate $H(z)$ with competitive per-cent level precision on redshifts $zlesssim2.5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا