ترغب بنشر مسار تعليمي؟ اضغط هنا

MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate

54   0   0.0 ( 0 )
 نشر من قبل Bradley Johnson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization of the cosmic microwave background radiation (CMB). MAXIPOL is the first bolometric CMB experiment to observe the sky using rapid polarization modulation. To build MAXIPOL, the CMB temperature anisotropy experiment MAXIMA was retrofitted with a rotating half-wave plate and a stationary analyzer. We describe the instrument, the observations, the calibration and the reduction of data collected with twelve polarimeters operating at 140 GHz and with a FWHM beam size of 10 arcmin. We present maps of the Q and U Stokes parameters of an 8 deg^2 region of the sky near the star Beta Ursae Minoris. The power spectra computed from these maps give weak evidence for an EE signal. The maximum-likelihood amplitude of l(l+1)C^{EE}_{l}/(2 pi) is 55_{-45}^{+51} uK^2 (68%), and the likelihood function is asymmetric and skewed positive such that with a uniform prior the probability that the amplitude is positive is 96%. This result is consistent with the expected concordance LCDM amplitude of 14 uK^2. The maximum likelihood amplitudes for l(l+1)C^{BB}_{l}/(2 pi) and $ell(ell+1)C^{EB}_{ell}/2pi$ are -31_{-19}^{+31} and 18_{-34}^{+27} uK^2 (68%), respectively, which are consistent with zero. All of the results are for one bin in the range 151 < l < 693. Tests revealed no residual systematic errors in the time or map domain. A comprehensive discussion of the analysis of the data is presented in a companion paper.



قيم البحث

اقرأ أيضاً

110 - C. A. Hill , A. Kusaka , P. Ashton 2020
We present the design and laboratory evaluation of a cryogenic continuously rotating half-wave plate (CHWP) for the POLARBEAR-2b (PB-2b) cosmic microwave background (CMB) receiver, the second installment of the Simons Array. PB-2b will observe at 5,2 00 m elevation in the Atacama Desert of Chile in two frequency bands centered at 90 and 150 GHz. In order to suppress atmospheric 1/f noise and mitigate systematic effects that arise when differencing orthogonal detectors, PB-2b modulates linear sky polarization using a CHWP rotating at 2 Hz. The CHWP has a 440 mm clear aperture diameter and is cooled to $approx$ 50 K in the PB-2b receiver cryostat. It consists of a low-friction superconducting magnetic bearing (SMB) and a low-torque synchronous electromagnetic motor, which together dissipate < 2 W. During cooldown, a grip-and-release mechanism centers the rotor to < 0.5 mm, and during continuous rotation, an incremental optical encoder measures the rotor angle with a noise level of 0.1 $mathrm{mu rad / sqrt{Hz}}$. We discuss the experimental requirements for the PB-2b CHWP, the designs of its various subsystems, and the results of its evaluation in the laboratory. The presented CHWP has been deployed to Chile and is expected to see first light on PB-2b in 2020 or 2021.
We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at nor mal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.
The most accessible method to measure polarization features of the CMB radiation is by means of a Stokes Polarimeter based on the rotation of an Half Wave Plate. The current observational cosmology is starting to be limited by the presence of systema tic effects. The Stokes polarimeter with a rotating Half Wave Plate (HWP) has the advantage of mitigating a long list of potential systematics, by modulation of the linearly polarized component of the radiation, but the presence of the rotating HWP can by itself introduce new systematic effects, which must be under control, representing one of the most critical part in the design of a B-Modes experiment. In this paper we present, simulate and analyse the spurious signal arising from the precession of a rotating HWP. We first find an analytical formula for the impact of the systematic effect induced by the HWP precession on the propagating radiation, using the 3D generalization of the Muller formalism. We then perform several numerical simulations, showing the effect induced on the Stokes parameters by this systematic. We also derive and discuss the impact into B-modes measured by a satellite experiment. We find the analytical formula for the Stokes parameters from a Stokes polarimeter where the HWP follows a precessional motion with an angle $theta_0$. We show the result depending on the HWP inertia tensor, spinning speed and on $theta_0$. The result of numerical simulations is reported as a simple timeline of the electric fields. Finally, assuming to observe all the sky with a satellite mission, we analyze the effect on B-modes measurements. The effect is not negligible giving the current B-modes experiments sensitivity, therefore it is a systematic which needs to be carefully considered for future experiments.
145 - C. Bao , B. Gold , C. Baccigalupi 2011
We study the impact of the spectral dependence of the linear polarization rotation induced by an achromatic half-wave plate on measurements of cosmic microwave background polarization in the presence of astrophysical foregrounds. We focus on the syst ematic effects induced on the measurement of inflationary gravitational waves by uncertainties in the polarization and spectral index of Galactic dust. We find that for the experimental configuration and noise levels of the balloon-borne EBEX experiment, which has three frequency bands centered at 150, 250, and 410 GHz, a crude dust subtraction process mitigates systematic effects to below detectable levels for 10% polarized dust and tensor to scalar ratio of as low as r = 0.01. We also study the impact of uncertainties in the spectral response of the instrument. With a top-hat model of the spectral response for each band, characterized by band-center and band-width, and with the same crude dust subtraction process, we find that these parameters need to be determined to within 1 and 0.8 GHz at 150 GHz; 9 and 2.0 GHz at 250 GHz; and 20 and 14 GHz at 410 GHz, respectively. The approach presented in this paper is applicable to other optical elements that exhibit polarization rotation as a function of frequency.
We discuss a systematic effect associated with measuring polarization with a continuously rotating half-wave plate. The effect was identified with the data from the E and B Experiment (EBEX), which was a balloon-borne instrument designed to measure t he polarization of the CMB as well as that from Galactic dust. The data show polarization fraction larger than 10% while less than 3% were expected from instrumental polarization. We give evidence that the excess polarization is due to detector non-linearity in the presence of a continuously rotating HWP. The non-linearity couples intensity signals into polarization. We develop a map-based method to remove the excess polarization. Applying this method for the 150 (250) GHz bands data we find that 81% (92%) of the excess polarization was removed. Characterization and mitigation of this effect is important for future experiments aiming to measure the CMB B-modes with a continuously rotating HWP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا