ترغب بنشر مسار تعليمي؟ اضغط هنا

A very brief description of LOFAR - the Low Frequency Array

104   0   0.0 ( 0 )
 نشر من قبل Heino Falcke
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Falcke




اسأل ChatGPT حول البحث

LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5 scale; 2) low-frequency surveys of the sky with of order $10^8$ expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.



قيم البحث

اقرأ أيضاً

LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFARs new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
We present the results of a recent re-reduction of the data from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS). We used the VLSS catalog as a sky model to correct the ionospheric distortions in the data and create a new set of sky maps a nd corresponding catalog at 73.8 MHz. The VLSS Redux (VLSSr) has a resolution of 75 arcsec, and an average map RMS noise level of $sigmasim0.1$ Jy beam$^{-1}$. The clean bias is $0.66timessigma$, and the theoretical largest angular size is 36 arcmin. Six previously un-imaged fields are included in the VLSSr, which has an unbroken sky coverage over 9.3 sr above an irregular southern boundary. The final catalog includes 92,964 sources. The VLSSr improves upon the original VLSS in a number of areas including imaging of large sources, image sensitivity, and clean bias; however the most critical improvement is the replacement of an inaccurate primary beam correction which caused source flux errors which vary as a function of radius to nearest pointing center in the VLSS.
We present observations of planetary nebulae with the LOw Frequency ARray (LOFAR) between 120 and 168 MHz. The images show thermal free-free emission from the nebular shells. We have determined the electron temperatures for spatially resolved, optica lly thick nebulae. These temperatures are 20 to 60% lower than those estimated from collisionally excited optical emission lines. This strongly supports the existence of a cold plasma component, which co-exists with hot plasma in planetary nebulae. This cold plasma does not contribute to the collisionally excited lines, but does contribute to recombination lines and radio flux. Neither of the plasma components are spatially resolved in our images, although we infer that the cold plasma extends to the outer radii of planetary nebulae. However, more cold plasma appears to exist at smaller radii. The presence of cold plasma should be taken into account in modeling of radio emission of planetary nebulae. Modelling of radio emission usually uses electron temperatures calculated from collisionally excited optical and/or infrared lines. This may lead to an underestimate of the ionized mass and an overestimate of the extinction correction from planetary nebulae when derived from the radio flux alone. The correction improves the consistency of extinction derived from the radio fluxes when compared to estimates from the Balmer decrement flux ratios.
126 - J. F. Helmboldt , W. M. Lane , 2012
The results of a climatological study of ionospheric disturbances derived from observations of cosmic sources from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS) are presented. We have used the ionospheric corrections applied to the 74 MH z interferometric data within the VLSS imaging process to obtain fluctuation spectra for the total electron content (TEC) gradient on spatial scales from a few to hundreds of kilometers and temporal scales from less than one minute to nearly an hour. The observations sample nearly all times of day and all seasons. They also span latitudes and longitudes from 28 deg. N to 40 deg. N and 95 deg. W to 114 deg. W, respectively. We have binned and averaged the fluctuation spectra according to time of day, season, and geomagnetic (Kp index) and solar (F10.7) activity. These spectra provide a detailed, multi-scale account of seasonal and intraday variations in ionospheric activity with wavelike structures detected at wavelengths between about 35 and 250 km. In some cases, trends between spectral power and Kp index and/or F10.7 are also apparent. In addition, the VLSS observations allow for measurements of the turbulent power spectrum down to periods of 40 seconds (scales of ~0.4 km at the height of the E-region). While the level of turbulent activity does not appear to have a strong dependence on either Kp index or F10.7, it does appear to be more pronounced during the winter daytime, summer nighttime, and near dusk during the spring.
Cassiopeia A was observed using the Low-Band Antennas of the LOw Frequency ARray (LOFAR) with high spectral resolution. This allowed a search for radio recombination lines (RRLs) along the line-of-sight to this source. Five carbon-alpha RRLs were det ected in absorption between 40 and 50 MHz with a signal-to-noise ratio of > 5 from two independent LOFAR datasets. The derived line velocities (v_LSR ~ -50 km/s) and integrated optical depths (~ 13 s^-1) of the RRLs in our spectra, extracted over the whole supernova remnant, are consistent within each LOFAR dataset and with those previously reported. For the first time, we are able to extract spectra against the brightest hotspot of the remnant at frequencies below 330 MHz. These spectra show significantly higher (15-80 %) integrated optical depths, indicating that there is small-scale angular structure on the order of ~1 pc in the absorbing gas distribution over the face of the remnant. We also place an upper limit of 3 x 10^-4 on the peak optical depths of hydrogen and helium RRLs. These results demonstrate that LOFAR has the desired spectral stability and sensitivity to study faint recombination lines in the decameter band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا