ترغب بنشر مسار تعليمي؟ اضغط هنا

Newly discovered active binaries in the RasTyc sample of stellar X-ray sources

82   0   0.0 ( 0 )
 نشر من قبل Katia Biazzo Dr
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Frasca




اسأل ChatGPT حول البحث

We present preliminary results of follow-up optical observations, both photometric and spectroscopic, of stellar X-ray sources, selected from the cross-correlation of ROSAT All-Sky Survey (RASS) and TYCHO catalogues. Spectra were acquired with the Elodie spectrograph at the 193-cm telescope of the Haute Provence Observatory (OHP) and with the REOSC echelle spectrograph at the 91-cm telescope of the Catania Astrophysical Observatory (OAC), while UBV photometry was made at OAC with the same telescope. In this work, we report on the discovery of six late-type binaries, for which we have obtained good radial velocity curves and solved for their orbits. Thanks to the OHP and OAC spectra, we have also made a spectral classification of single-lined binaries and we could give first estimates of the spectral types of the double-lined binaries. Filled-in or pure emission H-alpha profiles, indicative of moderate or high level of chromospheric activity, have been observed. We have also detected, in near all the systems, a photometric modulation ascribable to photospheric surface inhomogeneities which is correlated with the orbital period, suggesting a synchronization between rotational and orbital periods. For some systems has been also detected a variation of H-alpha line intensity, with a possible phase-dependent behavior.



قيم البحث

اقرأ أيضاً

251 - A. Klutsch 2008
During the study of a large set of late-type stellar X-ray sources, we discovered a large fraction of multiple systems. In this paper we investigate the orbital elements and kinematic properties of three new spectroscopic triple systems as well as sp ectral types and astrophysical parameters (T_eff, log g, vsin i, log N(Li)) of their components. We conducted follow-up optical observations, both photometric and spectroscopic at high resolution, of these systems. We used a synthetic approach and the cross-correlation method to derive most of the stellar parameters. We estimated reliable radial velocities and deduced the orbital elements of the inner binaries. The comparison of the observed spectra with synthetic composite ones, obtained as the weighted sum of three spectra of non-active reference stars, allowed us to determine the stellar parameters for each component of these systems. We found all are only composed of main sequence stars. These three systems are certainly stable hierarchical triples composed of short-period inner binaries plus a tertiary component in a long-period orbit. From their kinematics and/or Lithium content, these systems result to be fairly young.
We have conducted low-frequency radio observations with the Giant Metrewave Radio Telescope (GMRT) of 40 new hard X-ray sources discovered by the INTEGRAL satellite. This survey was conducted in order, to study radio emissions from these sources, to provide precise position and to identify new microquasar candidates. From our observations we find that 24 of the X-ray sources have radio candidates within the INTEGRAL error circle. Based on the radio morphology, variability and information available from different wavelengths, we categorize them as seventeen Galactic sources (4 unresolved, 7 extended, 6 extended sources in diffuse region) and seven extragalactic sources (2 unresolved, 5 extended). Detailed account for seventeen of these sources was presented in earlier paper. Based on the radio data for the remaining sources at 0.61 GHz, and the available information from NVSS, DSS, 2MASS and NED, we have identified possible radio counterparts for the hard X-ray sources. The three unresolved sources, viz IGR J17303$-$0601, IGR J17464$-$3213, and IGR J18406$-$0539 are discussed in detail. These sources have been identified as X-ray binaries with compact central engine and variable in X-ray and in the radio, and are most likely microquasar candidates. The remaining fourteen sources have extended radio morphology and are either diffuse Galactic regions or extragalactic in origin.
68 - Antonio Frasca 2006
The cross-correlation between the ROSAT all-sky survey (~150000 sources) and the Tycho mission (~1000000 stars) catalogs has selected about 14000 stellar X-ray sources (RasTyc sample, Guillout et al. 1999). About 200-300 stars have been spectroscopic ally observed at high resolution both in the Halpha and LiI lambda-6708 regions with Elodie and Aurelie spectrographs of the OHP (Observatoire de lHaute Provence, France). The aim was to classify the RasTyc star sample in terms of age and chromospheric activity level and to detect eventual binary systems. Photometric and spectroscopic follow-up observations of a RasTyc sub-sample composed of particularly interesting objects (binaries and very young stars) has been performed with the 91-cm telescope of the Catania Astrophysical Observatory. In this work we present some results of this monitoring. In particular, we have obtained good radial velocity curves and solved for the orbits of three SB2 and three SB1 spectroscopic binaries. In addition, for near all sources we have detected a photometric modulation ascribable to photospheric surface inhomogeneities and chromospheric Halpha line variation.
181 - R. Landi 2013
With respect to the recent INTEGRAL/IBIS 9-year Galactic Hard X-ray Survey (Krivonos et al. 2012), we use archival Swift/XRT observations in conjunction with multi-wavelength information to discuss the counterparts of a sample of newly discovered obj ects. The X-ray telescope (XRT, 0.3-10 keV) on board Swift, thanks to its few arcseconds source location accuracy, has been proven to be a powerful tool with which the X-ray counterparts to these IBIS sources can be searched for and studied. In this work, we present the outcome of this analysis by discussing four objects (SWIFT J0958.0-4208, SWIFT J1508.6-4953, IGR J17157-5449, and IGR J22534+6243) having either X-ray data of sufficient quality to perform a reliable spectral analysis or having interesting multiwaveband properties. We find that SWIFT J1508.6-4953 is most likely a Blazar, while IGR J22534+6243 is probably a HMXB. The remaining two objects may be contaminated by nearby X-ray sources and their class can be inferred only by means of optical follow-up observations of all likely counterparts.
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying prope rties of the emitted X-rays; but on the other side the accretors gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا