ترغب بنشر مسار تعليمي؟ اضغط هنا

New Abundances for Old Stars - Atomic Diffusion at Work in NGC 6397

71   0   0.0 ( 0 )
 نشر من قبل Andreas Korn
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.J. Korn




اسأل ChatGPT حول البحث

A homogeneous spectroscopic analysis of unevolved and evolved stars in the metal-poor globular cluster NGC 6397 with FLAMES-UVES reveals systematic trends of stellar surface abundances that are likely caused by atomic diffusion. This finding helps to understand, among other issues, why the lithium abundances of old halo stars are significantly lower than the abundance found to be produced shortly after the Big Bang.



قيم البحث

اقرأ أيضاً

We have previously reported on chemical abundance trends with evolutionary state in the globular cluster NGC 6397 discovered in analyses of spectra taken with FLAMES at the VLT. Here, we reinvestigate the FLAMES-UVES sample of 18 stars, ranging from just above the turnoff point (TOP) to the red giant branch below the bump. Inspired by new calibrations of the infrared flux method, we adopt a set of hotter temperature scales. Chemical abundances are determined for six elements (Li, Mg, Ca, Ti, Cr, and Fe). Signatures of cluster-internal pollution are identified and corrected for in the analysis of Mg. On the modified temperature scales, evolutionary trends in the abundances of Mg and Fe are found to be significant at the 2{sigma} and 3{sigma} levels, respectively. The detailed evolution of abundances for all six elements agrees with theoretical isochrones, calculated with effects of atomic diffusion and a weak to moderately strong efficiency of turbulent mixing. The age of these models is compatible with the external determination from the white dwarf cooling sequence. We find that the abundance analysis cannot be reconciled with the strong turbulent-mixing efficiency inferred elsewhere for halo field stars. A weak mixing efficiency reproduces observations best, indicating a diffusion-corrected primordial lithium abundance of log {epsilon}(Li) = 2.57 +- 0.10. At 1.2{sigma}, this value agrees well with WMAP-calibrated Big-Bang nucleosynthesis predictions.
166 - A.J. Korn 2007
We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopi c stellar parameters, in particular stellar-parameter differences between groups of stars, are in good agreement with broad-band and Stroemgren photometry calibrated on the infrared-flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 31% less abundant in the turnoff-point stars than in the red giants. An abundance difference in lithium is seen between the turnoff-point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti and Fe) are compared with stellar-structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the sub-primordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.
We measure the nitrogen abundance in 5 Turn Off(TO) stars of the Globular Clusters NGC 6397 and NGC 6752, and compare the cluster abundances with those of field stars of comparable metallicity. We determine the nitrogen abundance from the band head s ystem at 3360 AA, using spectra of resolution R=45000 obtained with the UVES spectrograph on the VLT. We apply the same method previously used on field stars, to allow a direct comparison of the results. Nitrogen is found to have the same abundance in two of the NGC 6397 stars, in spite of a difference of one order of magnitude in oxygen abundance between them. In a third star of NGC 6397 the value is slightly lower, but compatible with the other two, within the uncertainties. All the stars in NGC 6397 are N-rich with respect to field objects of similar metallicity. The two stars in NGC 6752 show a difference in nitrogen abundance by over one order of magnitude. The same stars differ in the abundances of other elements such as Na, O and Li, only by a factor 3-4. The behaviour of N is different in the two clusters: no variation is observed NGC 6397, while a large variation is observed in NGC 6752. This is consistent with a picture in which the stars in NGC 6752 have been formed by a mixture of ``pristine material and material which has been processed by an early generation of stars, referred to as ``polluters. The N abundances here reported will help to constrain the properties of the polluters. In the case of NGC 6397 a simple pollution history is probably not viable, since the observed variations in O abundances are not accompanied by corresponding variations in N or Li.
We have conducted a photometric survey of the globular cluster NGC 6397 in a search for variable stars. We obtained ~11h of time-resolved photometric images with one ne European Southern Observatory-Very Large Telescope using the FOcal Reducer and lo w dispersion Spectrograph imager distributed over two consecutive nights. We analyzed 8391 light curves of stars brighter than magnitude 23 with the 465 nm-filter, and we identified 412 variable stars, reaching ~ 4.8 +- 0.2 per cent of variability with timescales between 0.004 and 2d, with amplitudes variation greater than +- 0.2 mag.
196 - I. Platais 2011
We present comprehensive cluster membership and gr photometry of the prototypical old, metal-rich Galactic star cluster NGC 6791. The proper-motion catalog contains 58,901 objects down to g=24, limited to a circular area of radius 30 arcmin. The high est precision of the proper motions is 0.08 mas/yr. Our proper motions confirm cluster membership of all main and also some rare constituents of NGC 6791. The total number of probable cluster members down to g=22 (M_V=+8) is 4800, corresponding to M_tot=5000 M_solar. New findings include an extended horizontal branch in this cluster. The angular radius of NGC 6791 is at least 15 arcmin (the effective radius is R_h=4.4 arcmin while the tidal radius is r_t=23 arcmin). The luminosity function of the cluster peaks at M_g=+4.5 and then steadily declines toward fainter magnitudes. Our data provide evidence that differential reddening may not be ignored in NGC 6791.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا