ﻻ يوجد ملخص باللغة العربية
Using results from high-resolution galaxy formation simulations in a standard Lambda-CDM cosmology and a fully conservative multi-resolution radiative transfer code around point sources, we compute the energy-dependent escape fraction of ionizing photons from a large number of star forming regions in two galaxies at five different redshifts from z=3.8 to 2.39. All escape fractions show a monotonic decline with time, from (at the Lyman-limit) ~6-10% at z=3.6 to ~1-2% at z=2.39, due to higher gas clumping at lower redshifts. It appears that increased feedback can lead to higher f_esc at z>3.4 via evacuation of gas from the vicinity of star forming regions and to lower f_esc at z<2.39 through accumulation of swept-up shells in denser environments. Our results agree well with the observational findings of citet{inoue..06} on redshift evolution of f_esc in the redshift interval z=2-3.6.
We investigate radiation hardness within a representative sample of 67 nearby (0.02 $lesssim $z$ lesssim$0.06) star-forming (SF) galaxies using the integral field spectroscopic data from the MaNGA survey. The softness parameter $eta$ = $frac{O^{+}/O^
We explore the production and escape of ionizing photons in young galaxies by investigating the ultraviolet and optical emission-line properties of models of ionization-bounded and density-bounded HII regions, active-galactic-nucleus (AGN) narrow-lin
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th
In this paper we calculate the escape fraction ($f_{rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the e
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev