ترغب بنشر مسار تعليمي؟ اضغط هنا

Off-center ignition in type Ia supernova: I. Initial evolution and implications for delayed detonation

58   0   0.0 ( 0 )
 نشر من قبل Friedrich Konrad Roepke
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. K. Roepke




اسأل ChatGPT حول البحث

The explosion of a carbon-oxygen white dwarf as a Type Ia supernova is known to be sensitive to the manner in which the burning is ignited. Studies of the pre-supernova evolution suggest asymmetric, off-center ignition, and here we explore its consequences in two- and three-dimensional simulations. Compared with centrally ignited models, one-sided ignitions initially burn less and release less energy. For the distributions of ignition points studied, ignition within two hemispheres typically leads to the unbinding of the white dwarf, while ignition within a small fraction of one hemisphere does not. We also examine the spreading of the blast over the surface of the white dwarf that occurs as the first plumes of burning erupt from the star. In particular, our studies test whether the collision of strong compressional waves can trigger a detonation on the far side of the star as has been suggested by Plewa et al. (2004). The maximum temperature reached in these collisions is sensitive to how much burning and expansion has already gone on, and to the dimensionality of the calculation. Though detonations are sometimes observed in 2D models, none ever happens in the corresponding 3D calculations. Collisions between the expansion fronts of multiple bubbles also seem, in the usual case, unable to ignite a detonation. Gravitationally confined detonation is therefore not a robust mechanism for the explosion. Detonation may still be possible in these models however, either following a pulsation or by spontaneous detonation if the turbulent energy is high enough.

قيم البحث

اقرأ أيضاً

79 - F. K. Roepke 2006
We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different ini tial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.
76 - M. Bulla , S. A. Sim , M. Kromer 2016
Calculations of synthetic spectropolarimetry are one means to test multi-dimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M$_{odot}$ white dwarf binary system is too asym metric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a two-dimensional double-detonation model and a three-dimensional delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels ($<$ 1 per cent) for both explosion models. Polarization in the continuum peaks at $sim$ 0.1$-$0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si ii {lambda}6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O i {lambda}7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.
78 - P.Hoeflich , C. Ashall , S. Bose 2021
We present and analyze a near infrared(NIR) spectrum of the under-luminous Type Ia supernova SN~2020qxp/ASASSN-20jq obtained with NIRES at the Keck Observatory 191 days after B-band maximum. The spectrum is dominated by a number of broad emission fea tures including the [FeII] at 1.644mu which is highly asymmetric with a tilted top and a peak red-shifted by ~2,000km/s. In comparison with 2-D non-LTE synthetic spectra computed from 3-D simulations of off-center delayed-detonation Chandrasekhar-mass white-dwarf(WD) models, we find good agreement between the observed lines and the synthetic profiles, and are able to unravel the structure of the progenitors envelope. We find that the size and tilt of the [Fe II] 1.644mu-profile (in velocity space) is an effective way to determine the location of an off-center delayed-detonation transition (DDT) and the viewing angle, and it requires a WD with a high central density of ~4E9$g/cm^3$. We also tentatively identify a stable Ni feature around 1.9mu characterized by a `pot-belly profile that is slightly offset with respect to the kinematic center. In the case of SN~2020qxp/ASASSN-20jq, we estimate that the location of the DDT is ~0.3M(WD) off-center, which gives rise to an asymmetric distribution of the underlying ejecta. We also demonstrate that low-luminosity and high-density WD SNIa progenitors exhibit a very strong overlap of Ca and 56Ni in physical space. This results in the formation of a prevalent [Ca II] 0.73mu emission feature, which is sensitive to asymmetry effects. Our findings are discussed within the context of alternative scenarios, including off-center C/O detonations in He-triggered sub-M(Ch)-WDs and the direct collision of two WDs. Snapshot programs with Gemini/Keck/VLT/ELT class instruments and our spectropolarimetry program are complementary to mid-IR spectra by JWST.
57 - F. K. Roepke 2005
We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simu lations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.
We present results for a suite of fourteen three-dimensional, high resolution hydrodynamical simulations of delayed-detonation modelsof Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulati ons with detailed isotopic yield information. As such, it may serve as a database for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration to detonation transition (DDT) probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300, and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with central density of 2.9 x 10^9 gcc, plus in addition one high central density (5.5 x 10^9 gcc), and one low central density (1.0 x 10^9 gcc) rendition of the 100 ignition kernel configuration. For each simulation we determined detailed nucleosynthetic yields by post-processing 10^6 tracer particles with a 384 nuclide reaction network. All delayed detonation models result in explosions unbinding the white dwarf, producing a range of 56Ni masses from 0.32 to 1.11 solar masses. As a general trend, the models predict that the stable neutron-rich iron group isotopes are not found at the lowest velocities, but rather at intermediate velocities (~3,000 - 10,000 km/s) in a shell surrounding a 56Ni-rich core. The models further predict relatively low velocity oxygen and carbon, with typical minimum velocities around 4,000 and 10,000 km/s, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا