ﻻ يوجد ملخص باللغة العربية
We consider dark matter annihilation into Standard Model particles and show that the least detectable final states, namely neutrinos, define an upper bound on the total cross section. Calculating the cosmic diffuse neutrino signal, and comparing it to the measured terrestrial atmospheric neutrino background, we derive a strong and general bound. This can be evaded if the annihilation products are dominantly new and truly invisible particles. Our bound is much stronger than the unitarity bound at the most interesting masses, shows that dark matter halos cannot be significantly modified by annihilations, and can be improved by a factor of 10--100 with existing neutrino experiments.
How large can the dark matter self-annihilation rate in the late universe be? This rate depends on (rho_DM/m_chi)^2 <sigma_A v>, where rho_DM/m_chi is the number density of dark matter, and the annihilation cross section is averaged over the velocity
We analyze 2.8-yr data of 1-100 GeV photons for clusters of galaxies, collected with the Large Area Telescope onboard the Fermi satellite. By analyzing 49 nearby massive clusters located at high Galactic latitudes, we find no excess gamma-ray emissio
We study the effects of WIMP dark matter (DM) on the collapse and evolution of the first stars in the Universe. Using a stellar evolution code, we follow the pre-Main Sequence (MS) phase of a grid of metal-free stars with masses in the range 5-600 so
Under the hypothesis of a Dark Matter composed by supersymmetric particles like neutralinos, we investigate the possibility that their annihilation in the haloes of nearby galaxies could produce detectable fluxes of $gamma$-photons. Expected fluxes d
Critical probes of dark matter come from tests of its elastic scattering with nuclei. The results are typically assumed to be model-independent, meaning that the form of the potential need not be specified and that the cross sections on different nuc