ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Observations of the Prototypical Extremely Red Objects HR10 and LBDS53W091: Separating Dusty Starbursts from Old Elliptical Galaxies

39   0   0.0 ( 0 )
 نشر من قبل Daniel Stern
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Stern




اسأل ChatGPT حول البحث

We present Spitzer Space Telescope observations of the well-studied extremely red objects (EROs) HR10 and LBDS53W091 from 3.6 to 160 microns. These galaxies are the prototypes of the two primary classes of EROs: dusty starbursts and old, evolved galaxies, respectively. Both galaxies, as well as LBDS53W069, another example of an old, quiescent galaxy, are well-detected out to 8 microns. However, only the dusty starburst HR10 is detected in the far-infrared. All three EROs have stellar masses of a few times 10^11 M(sun). Using evolutionary model fits to their multiband photometry, we predict the infrared colors of similar EROs at 1<z<2. We find that blueward of observed 10 microns, the two ERO classes are virtually indistinguishable photometrically. Deep spectroscopy and 24 micron data allow the classes to be separated.


قيم البحث

اقرأ أيضاً

38 - Tomonori Totani 2001
We report observational analyses and theoretical interpretations of unusually red galaxies in the Subaru Deep Field (SDF). A careful analysis of the SDF data revealed a population with unusually red near-infrared (NIR) colors of J - K >~ 3-4, with hi gher confidence than the previous SDF result. Their surface number density drastically increases at K >~ 22 and becomes roughly the same with that of dusty starburst galaxies detected by submillimeter observations in recent years. These colors are even redder than the known population of the extremely red objects (EROs), and too red to explain by passively evolving elliptical galaxies which are the largest population of EROs. Hence these hyper extremely red objects (HEROs) should be considered as a distinct population from EROs. We discuss several possible interpretations of these enigmatic objects, and we show that these red NIR colors, K-band and sub-mm flux, and surface number density are quantitatively best explained by primordial elliptical galaxies reddened by dust, still in the starburst phase of their formation at z ~ 3.
We report the results of a deep SCUBA-2 850- and 450-$mu$m survey for dust-obscured ultra-luminous infrared galaxies (U/LIRGs) in the field of the z=1.46 cluster XCS J2215.9-1738. We detect a striking overdensity of sub-millimeter sources coincident with the core of this cluster: $sim 3-4 times$ higher than expected in a blank field. We use the likely radio and mid-infrared counterparts to show that the bulk of these sub-millimeter sources have spectroscopic or photometric redshifts which place them in the cluster and that their multi-wavelength properties are consistent with this association. The average far-infrared luminosities of these galaxies are $(1.0pm0.1) times 10^{12} L_{odot}$, placing them on the U/LIRG boundary. Using the total star formation occurring in the obscured U/LIRG population within the cluster we show that the resulting mass-normalized star-formation rate for this system supports previous claims of a rapid increase in star-formation activity in cluster cores out to $zsim1.5$, which must be associated with the on-going formation of the early-type galaxies which reside in massive clusters today.
117 - Casey Papovich , GOODS , 2006
I discuss constraints on star formation and AGN in massive, red galaxies at z~1-3 using Spitzer observations at 3-24 micron. In particular I focus on a sample of distant red galaxies (DRGs) with J - K > 2.3 in the southern Great Observatories Origins Deep Survey (GOODS-S) field. The DRGs have typical stellar masses >10^11 solar masses. Interestingly, the majority (>50%) of these objects have 24 micron flux densities >50 micro-Jy. At these redshifts massive galaxies undergo intense (and possibly frequent) IR-active phases, which is in constrast to lower-redshift massive galaxies. If the 24 micron emission in these z~1-3 galaxies is attributed to star formation, then it implies star formation rates (SFRs) in excess of ~100 solar masses per year. These galaxies have specific SFRs equal to or exceeding the global average value at that epoch. Thus, this is an active period in their assembly. Based on their X-ray luminosities and near-IR colors, as many as 25% of the massive galaxies at z>1.5 host AGN, suggesting that the growth of supermassive black holes coincides with massive-galaxy assembly.
86 - Lin Yan 2000
We present a catalog of extremely red objects discovered using the NICMOS/HST parallel imaging database and ground-based optical follow-up observations. Within an area of 16 square arc-minutes, we detect 15 objects with $rm R - F160W > 5$ and $rm F16 0W < 21.5$. We have also obtained K-band photometry for a subset of the 15 EROs. All of the $rm R - F160W$ selected EROs imaged at K-band have $rm R - K > 6$. Our objects have $rm F110W - F160W$ colors in the range of 1.3 - 2.1, redder than the cluster ellipticals at $z sim 0.8$ and nearly 1 magnitude redder than the average population selected from the F160W images at the same depth. In addition, among only 22 NICMOS pointings, we detected two groups or clusters in two fields, each contains 3 or more EROs, suggesting that extremely red galaxies may be strongly clustered. At bright magnitudes with $rm F160W < 19.5$, the ERO surface density is similar to what has been measured by other surveys. At the limit of our sample, F160W = 21.5, our measured surface density is 0.94$pm 0.24$ arcmin^{-2}. Excluding the two possible groups/clusters and the one apparently stellar object, reduces the surface density to 0.38$pm 0.15$ arcmin^{-2}.
99 - G. Wilson 2004
We investigate Extremely Red Objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 micron) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the IRAC camera allo ws us to detect 64 EROs in only 12 minutes of IRAC exposure time, by means of an R-[3.6] color cut (analogous to the traditional red R-K cut). A pure infrared K-[3.6] red cut detects a somewhat different population and may be more effective at selecting z > 1.3 EROs. We find 17% of all galaxies detected by IRAC at 3.6 or 4.5 micron to be EROs. These percentages rise to about 40% at 5.8 micron, and about 60% at 8.0 micron. We utilize the spectral bump at 1.6 micron to divide the EROs into broad redshift slices using only near-infrared colors (2.2/3.6/4.5 micron). We conclude that two-thirds of all EROs lie at redshift z > 1.3. Detections at 24 micron imply that at least 11% of 0.6 < z < 1.3 EROs and at least 22% of z > 1.3 EROs are dusty star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا