ترغب بنشر مسار تعليمي؟ اضغط هنا

Most Detects G- and P-Modes in the B Supergiant HD 163899 (B2Ib/II)

54   0   0.0 ( 0 )
 نشر من قبل Hideyuki Saio
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The {it Microvariability and Oscillations of Stars (MOST)} satellite observed the B supergiant HD 163899 (B2 Ib/II) for 37 days as a guide star and detected 48 frequencies $la$ 2.8 c d$^{-1}$ with amplitudes of a few milli-magnitudes (mmag) and less. The frequency range embraces g- and p-mode pulsations. It was generally thought that no g-modes are excited in less luminous B supergiants because strong radiative damping is expected in the core. Our theoretical models, however, show that such g-modes are excited in massive post-main-sequence stars, in accordance with these observations. The nonradial pulsations excited in models between $20M_odot$ at $log T_{rm eff} approx 4.41$ and $15M_odot$ at $log T_{rm eff} approx 4.36$ are roughly consistent with the observed frequency range. Excitation by the Fe-bump in opacity is possible because g-modes can be partially reflected at a convective zone associated with the hydrogen-burning shell, which significantly reduces radiative damping in the core. The {it MOST} light curve of HD 163899 shows that such a reflection of g-modes actually occurs, and reveals the existence of a previously unrecognized type of variable, slowly pulsating B supergiants (SPBsg) distinct from $alpha$ Cyg variables. Such g-modes have great potential for asteroseismology.


قيم البحث

اقرأ أيضاً

196 - C. Cameron , H. Saio , R. Kuschnig 2008
The MOST (Microvariability and Oscillations of Stars) satellite has discovered SPBe (Slowly Pulsating Be) oscillations in the stars HD 127756 (B1/B2 Vne) and HD 217543 (B3 Vpe). For HD 127756, 30 significant frequencies are identified from 31 days of nearly continuous photometry; for HD 217543, up to 40 significant frequencies from 26 days of data. In both cases, the oscillations fall into three distinct frequency ranges, consistent with models of the stars. The variations are caused by nonradial g-modes (and possibly r-modes) distorted by rapid rotation and excited by the opacity mechanism near the iron opacity bump. A comparison of pulsation models and observed frequency groups yields a rotation frequency for each star, independently of vsini. The rotation rates of these stars, as well as those of the SPBe stars previously discovered by MOST, HD 163868 and $beta$ CMi, are all close to their critical values.
For the B-type supergiant $kappa$ Cassiopeiae (HD 2905) variabilities with periods between several hours and a few days have been observed both photometrically and spectroscopically. A recent study of this star by Simon-D{i}az et al. (2018) has revea led variability with a dominant period of 2.7 days. To understand this variability, we present a linear non-adiabatic stability analysis with respect to radial perturbations for models of $kappa$ Cassiopeiae. Instabilities associated with the fundamental mode and the first overtone are identified for models with masses between 27 M$_{odot}$ and 44 M$_{odot}$. For selected models, the instabilities are followed into the non-linear regime by numerical simulations. As a result, finite amplitude pulsations with periods between 3 and 1.8 days are found. The model with a mass of 34.5 M$_{odot}$ exhibits a pulsation period of 2.7 days consistent with the observations. In the non-linear regime, the instabilities may cause a substantial inflation of the envelope.
Context: Recent observations of HD49933 by the space-photometric mission CoRoT provide photometric evidence of solar type oscillations in a star other than our Sun. The first published reduction, analysis, and interpretation of the CoRoT data yielded a spectrum of p-modes with l = 0, 1, and 2. Aims: We present our own analysis of the CoRoT data in an attempt to compare the detected pulsation modes with eigenfrequencies of models that are consistent with the observed luminosity and surface temperature. Methods: We used the Gruberbauer et al. frequency set derived based on a more conservative Bayesian analysis with ignorance priors and fit models from a dense grid of model spectra. We also introduce a Bayesian approach to searching and quantifying the best model fits to the observed oscillation spectra. Results: We identify 26 frequencies as radial and dipolar modes. Our best fitting model has solar composition and coincides within the error box with the spectroscopically determined position of HD49933 in the H-R diagram. We also show that lower-than-solar Z models have a lower probability of matching the observations than the solar metallicity models. To quantify the effect of the deficiencies in modeling the stellar surface layers in our analysis, we compare adiabatic and nonadiabatic model fits and find that the latter reproduces the observed frequencies better.
{We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD,46769 ($V=5.79$). We also attempt to detect a magnetic field in the target.} {We analyse a 23-day oversampled CoRoT light curve after detrending, as well as spectroscopic follow-up data, by using standard Fourier analysis and Phase Dispersion Minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assumping a dipole field.} {In the CoRoT data, we detect a dominant period of 4.84,d with an amplitude of 87,ppm, and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69,d. Subtraction of the rotational modulation signal does not reveal any sign of pulsations. Our results are consistent with the absence of variability in the Hipparcos light curve. The spectroscopy leads to a projected rotational velocity of 72$pm 2$,km,s$^{-1}$ and does not reveal periodic variability nor the need to invoke macroturbulent line broadening. No signature of a magnetic field is detected in our data. A field stronger than $sim 500$,G at the poles can be excluded, unless the possible non-detected field were more complex than dipolar.} {The absence of pulsations and of macroturbulence of this evolved B-type supergiant is placed into context of instability computations and of observed variability of evolved B-type stars.}
We report the discovery of a square axisymmetric circumstellar nebula around the emission-line star HD 93795 in archival Spitzer Space Telescope 24 micron data. We classify HD 93795 as an B9 Ia star using optical spectra obtained with the Southern Af rican Large Telescope (SALT). A spectral analysis carried out with the stellar atmosphere code FASTWIND indicates that HD 93795 only recently left the main sequence and is evolving redward for the first time. We discuss possible scenarios for the origin of the nebula and suggest that HD 93795 was originally a binary system and that the nebula was formed because of merger of the binary components. We also discuss a discrepancy between distance estimates for HD 93795 based on the Gaia data and the possible membership of this star of the Car OB1 association, and conclude that HD 93795 could be at the same distance as Car OB1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا