ﻻ يوجد ملخص باللغة العربية
Element diffusion is expected to occur in all kinds of stars : according to the relative effect of gravitation and radiative acceleration, they can fall or be pushed up in the atmospheres. Helium sinks in all cases, thereby creating a gradient at the bottom of the convective zones. This can have important consequences for the sound velocity, as has been proved in the sun with helioseismology. We investigate signatures of helium diffusion in late F-type stars by asteroseismology. Stellar models were computed with different physical inputs (with or without element diffusion) and iterated in order to fit close-by evolutionary tracks for each mass. The theoretical oscillation frequencies were computed and compared for pairs of models along the tracks. Various asteroseismic tests (large separations, small separations, second differences) were used and studied for the comparisons. The results show that element diffusion leads to changes in the frequencies for masses larger than 1.2 Msun. In particular the helium gradient below the convective zone should be detectable through the second differences.
All evolved stars with masses $M_starlesssim 2M_odot$ undergo a helium(He)-core flash at the end of their first stage as a giant star. Although theoretically predicted more than 50 years ago, this core-flash phase has yet to be observationally probed
The element diffusion, described by Michaud (1970), is now recognized to occur in all kinds of stars. We attempt to give evidence of signatures of helium diffusion below the convective zone by the way of asteroseismology.
Detailed understanding of stellar physics is essential towards a robust determination of stellar properties (e.g. radius, mass, and age). Among the vital input physics used in the modelling of solar-type stars which remain poorly constrained, is the
Recent studies have argued that the progenitor system of type Iax supernovae must consist of a carbon-oxygen white dwarf accreting from a helium star companion. Based on existing explosion models invoking the pure deflagration of carbon-oxygen white
Stellar magnetic activity decays over the main-sequence life of cool stars due to the stellar spin-down driven by magnetic braking. The evolution of chromospheric emission is well-studied for younger stars, but difficulties in determining the ages of