ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gravitational Lens -- Galaxy Group Connection. II. Groups Associated with B2319+051 and B1600+434

64   0   0.0 ( 0 )
 نشر من قبل Matt Auger
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. W. Auger




اسأل ChatGPT حول البحث

We report on the results of a spectroscopic survey of the environments of the gravitational lens systems CLASS B1600+434 (z_l = 0.41, z_s = 1.59) and CLASS B2319+051 (z_l = 0.62). The B1600+434 system has a time delay measured for it, and we find the system to lie in a group with a velocity dispersion of 100 km/s and at least six members. B2319+051 has a large group in its immediate foreground with at least 10 members and a velocity dispersion of 460 km/s and another in the background of the lens with a velocity dispersion of 190 km/s. There are several other small groups in the fields of these lens systems, and we describe the properties of these moderate redshift groups. Furthermore, we quantify the effects of these group structures on the gravitational lenses and find a ~5% correction to the derived value of H_0 for B1600+434.

قيم البحث

اقرأ أيضاً

We report the discovery of a new two-image gravitational lens system from the Cosmic Lens All-Sky Survey, CLASS B2319+051. Radio imaging with the Very Large Array (VLA) and Multi-Element Radio-Linked Interferometer Network (MERLIN) shows two compact components with a flux density ratio of 5:1, separated by 1.36 arcsec. Observations with the Very Long Baseline Array (VLBA) resolve each of the radio components into a pair of parity-reversed subcomponents. Hubble Space Telescope (HST) observations with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) show a bright elliptical galaxy (G1) coincident with the radio position, and a second irregular galaxy (G2) 3.4 arcsec to the northwest. Previous spectroscopic studies have indicated that these galaxies are at different redshifts: z(G1) = 0.624, z(G2) = 0.588. Infrared counterparts to the lensed radio components are not detected in the NICMOS image, and the source redshift has not yet been determined. Preliminary mass modeling based on the VLBA subcomponent data indicates that the lensing potential includes a strong external shear contribution. A VLA monitoring program is currently being undertaken to measure the differential time delay.
In the gravitational lens system B1600+434 the brighter image, A, is known to show rapid variability which is not detected in the weaker image, B (Koopmans & de Bruyn 2000). Since correlated variability is one of the fundamental properties of gravita tional lensing, it has been proposed that image A is microlensed by stars in the halo of the lensing galaxy (Koopmans & de Bruyn 2000). We present VLBA observations of B1600+434 at 15 GHz with a resolution of 0.5 milliarcsec to determine the source structure at high spatial resolution. The surface brightness of the images are significantly different, with image A being more compact. This is in apparent contradiction with the required property of gravitational lensing that surface brightness be preserved. Our results suggest that both the lensed images may show two-sided elongation at this resolution, a morphology which does not necessarily favour superluminal motion. Instead these data may suggest that image B is scatter-broadened at the lens so that its size is larger than that of A, and hence scintillates less than image A.
113 - I. Burud 2000
We present optical I-band light curves of the gravitationally lensed double QSO B1600+434 from observations obtained at the Nordic Optical Telescope (NOT) between April 1998 and November 1999. The photometry has been performed by simultaneous deconvo lution of all the data frames, involving a numerical lens galaxy model. Four methods have been applied to determine the time delay between the two QSO components, giving a mean estimate of Delta_t = 51+/-4 days (95% confidence level). This is the fourth optical time delay ever measured. Adopting a Omega=0.3, Lambda=0 Universe and using the mass model of Maller et al. (2000), this time-delay estimate yields a Hubble parameter of H_0=52 (+14, -8) km s^-1 Mpc^-1 (95% confidence level) where the errors include time-delay as well as model uncertainties. There are time-dependent offsets between the two (appropriately shifted) light curves that indicate the presence of external variations due to microlensing.
233 - L.V.E. Koopmans 2000
We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find a nearly linear decrease of 18-19% in the flux densities of both lens images over a period o f eight months (February-October) in 1998. Additionally, the brightest image A shows modulations up to 11% peak-to-peak on scales of days to weeks over a large part of the observing period. Image B varies significantly less on this time scale. We conclude that most of the short-term variability in image A is not intrinsic source variability, but is most likely caused by microlensing in the lens galaxy. The alternative, scintillation by the ionized Galactic ISM, is shown to be implausible based on its strong opposite frequency dependent behavior compared with results from multi-frequency WSRT monitoring observations (Koopmans & de Bruyn 1999). From these VLA light curves we determine a median time delay between the lens images of 47^{+5}_{-6} d (68%) or 47^{+12}_{-9} d (95%). We use two different methods to derive the time delay; both give the same result within the errors. We estimate an additional systematic error between -8 and +7 d. If the mass distribution of lens galaxy can be described by an isothermal model (Koopmans, de Bruyn & Jackson 1998), this time delay would give a value for the Hubble parameter, H_0=57^{+14}_{-11} (95% statistical) ^{+26}_{-15} (systematic) km/s/Mpc (Omega_m=1 and Omega_Lambda=0). Similarly, the Modified-Hubble-Profile mass model would give H_0=74^{+18}_{-15} (95% statistical) ^{+22}_{-22} (systematic) km/s/Mpc. For Omega_m=0.3 and Omega_Lambda=0.7, these values increase by 5.4%. ... (ABRIDGED)
106 - L.M. Lubin 1999
We present new results from a continuing Keck program to study gravitational lens systems. We have obtained redshifts for three lens systems, SBS 0909+532, HST 1411+5211, and CLASS B2319+051. For all of these systems, either the source or lens redshi ft (or both) has been previously unidentified. We find (z_l, z_s) = (0.830, 1.377) for SBS 0909+532; (z_l, z_s) = (0.465, 2.811) for HST 1411+5211, although the source redshift is still tentative; and (z_l1, z_l2) = (0.624, 0.588) for the two lensing galaxies in CLASS B2319+051. The background radio source in B2319+051 has not been detected optically; its redshift is, therefore, still unknown. We find that the spectral features of the central lensing galaxy in all three systems are typical of an early-type galaxy. The observed image splittings in SBS 0909+532 and HST 1411+5211 imply that the masses within the Einstein ring radii of the lensing galaxies are 1.4 x 10^{11} and 2.0 x 10^{11} h^{-1} M_sun, respectively. The resulting B band mass-to-light ratio for HST 1411+5211 is 41.3 +/- 1.2 h (M/L)_sun, a factor of 5 times higher than the average early-type lensing galaxy. This large mass-to-light is almost certainly the result of the additional mass contribution from the cluster CL 3C295 at z = 0.46. For the lensing galaxy in SBS 0909+532, we measure (M/L)_B = 4^{+11}_{-3} h (M/L)_sun where the large errors are the result of significant uncertainty in the galaxy luminosity. While we cannot measure directly the mass-to-light ratio of the lensing galaxy in B2319+051, we estimate that (M/L)_B is between 3-7 h (M/L)_sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا