ﻻ يوجد ملخص باللغة العربية
The spectral energy distribution (SED) of a non-spherical star could differ significantly from the SED of a spherical star with the same average temperature and luminosity. Calculation of the SED of a deformed star is often approximated as a composite of several spectra, each produced by a plane parallel model of given effective temperature and gravity. The weighting of these spectra over the stellar surface, and hence the inferred effective temperature and luminosity, will be dependent on the inclination of the rotation axis of the star with respect to the observer, as well as the temperature and gravity distribution on the stellar surface. Here we calculate the surface conditions of rapidly rotating stars with a 2D stellar structure and evolution code and compare the effective temperature distribution to that predicted by von Zeipels law. We calculate the composite spectrum for a deformed star by interpolating within a grid of intensity spectra of plane parallel model atmospheres and integrating over the surface of the star. Using this method, we find that the deduced variation of effective temperature with inclination can be as much as 3000 K for an early B star, depending on the details of the underlying model.
In this paper, I present a new set of synthetic spectral energy distributions (SEDs) for young stellar objects (YSOs) spanning a wide range of evolutionary stages, from the youngest deeply embedded protostars to pre-main-sequence stars with few or no
We present spectrophotometric data from 0.4 to 4.2 microns for bright, northern sky, Be stars and several other types of massive stars. Our goal is to use these data with ongoing, high angular resolution, interferometric observations to model the den
We carried out a critical appraisal of the two theoretical models, Kurucz ATLAS9 and PHOENIX/NextGen, for stellar atmosphere synthesis. Our tests relied on the theoretical fit of SEDs for a sample of 334 target stars along the whole spectral-type seq
We present HST/ACS ultraviolet photometry of three quiescent black hole X-ray transients: X-ray Nova Muscae 1991 (GU Mus), GRO J0422+32 (V518 Per), and X-ray Nova Vel 1993 (MM Vel), and one neutron star system, Aql X-1. These are the first quiescent
The spectral energy distributions (SEDs) of dusty high-redshift galaxies are poorly sampled in frequency and spatially unresolved. Their form is crucially important for estimating the large luminosities of these galaxies accurately, for providing cir