ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect Search for Dark Matter in M31 with the CELESTE Experiment

78   0   0.0 ( 0 )
 نشر من قبل Julien Lavalle
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If dark matter is made of neutralinos, annihilation of such Majorana particles should produce high energy cosmic rays, especially in galaxy halo high density regions like galaxy centres. M31 (Andromeda) is our nearest neighbour spiral galaxy, and both its high mass and its low distance make it a source of interest for the indirect search for dark matter through gamma-ray detection. The ground based atmospheric Cherenkov telescope CELESTE observed M31 from 2001 to 2003, in the mostly unexplored energy range 50-500 GeV. These observations provide an upper limit on the flux above 50 GeV around $10^{-10}rm{cm}^{-2}rm{s}^{-1}$ in the frame of supersymmetric dark matter, and more generally on any gamma emission from M31.

قيم البحث

اقرأ أيضاً

It is widely believed that dark matter exists within galaxies and clusters of galaxies. Under the assumption that this dark matter is composed of the lightest, stable supersymmetric particle, assumed to be the neutralino, the feasibility of its indir ect detection via observations of a diffuse gamma-ray signal due to neutralino annihilations within M31 is examined. To this end, first the dark matter halo of the close spiral galaxy M31 is modeled from observations, then the resultant gamma-ray flux is estimated within supersymmetric model configurations. We conclude that under favorable conditions such as the rapid accretion of neutralinos on the central black hole in M31 and/or the presence of many clumps inside its halo with $r^{-3/2}$ inner profiles, a neutralino annihilation gamma-ray signal is marginally detectable by the ongoing collaboration CELESTE.
We present a new module of micrOMEGAs devoted to the computation of indirect signals from dark matter annihilation in any new model with a stable weakly interacting particle. The code provides the mass spectrum, cross-sections, relic density and exot ic fluxes of gamma rays, positrons and antiprotons. The propagation of charged particles in the Galactic halo is handled with a new module that allows to easily modify the propagation parameters.
143 - S. Di Falco 2006
The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station, will provide data on cosmic radiations in the energy range from 0.5 GeV to 3 TeV. The main physics goals are the anti-matter and the dark matter searches. Obse rvations and cosmology indicate that the Universe may include a large amount of unknown Dark Matter. It should be composed of non baryonic Weakly Interacting Massive Particles (WIMP). In R-parity conserving models a good WIMP candidate is the lightest SUSY particle. AMS offers a unique opportunity to study simultaneously SUSY dark matter in three decay channels resulting from the neutralino annihilation: e+, antiproton and gamma. Either in the SUSY frame and in alternative scenarios (like extra-dimensions) the expected flux sensitivities as a function of energy in 3 year exposure for the e+/e- ratio, gamma and antiproton yields are presented.
The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have establis hed increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an emphasis on the complementarity between direct detection in dedicated laboratory experiments, indirect detection in the cosmic radiation, and searches at particle accelerators.
70 - Giulia DImperio 2018
The SABRE (Sodium Iodide with Active Background REjection) experiment will search for an annually modulating signal from dark matter using an array of ultra-pure NaI(Tl) detectors surrounded by an active scintillator veto to further reduce the backgr ound. The first phase of the experiment is the SABRE Proof of Principle (PoP), a single 5 kg crystal detector operated in a liquid scintillator filled vessel at Laboratori Nazionali del Gran Sasso (LNGS). The SABRE-PoP installation is underway with the goal of running in 2018 and performing the first in situ measurement of the crystal background, testing the veto efficiency, and validating the SABRE concept. The second phase of SABRE will be twin arrays of NaI(Tl) detectors operating at LNGS and at the Stawell Underground Physics Laboratory (SUPL) in Australia. By locating detectors in both hemispheres, SABRE will minimize seasonal systematic effects. This paper presents the status report of the SABRE activities as well as the results from the most recent Monte Carlo simulation and the expected sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا