ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Silicon Abundance in Photodissociation Regions

250   0   0.0 ( 0 )
 نشر من قبل Yoko Okada
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yoko Okada




اسأل ChatGPT حول البحث

We have made one-dimensional raster-scan observations of the rho Oph and sigma Sco star-forming regions with two spectrometers (SWS and LWS) on board the ISO. In the rho Oph region, [SiII] 35um, [OI] 63um, 146um, [CII] 158um, and the H2 pure rotational transition lines S(0) to S(3) are detected, and the PDR properties are derived as the radiation field scaled by the solar neighborhood value G_0~30-500, the gas density n~250--2500 /cc, and the surface temperature T~100-400 K. The ratio of [SiII] 35um to [OI] 146um indicates that silicon of 10--20% of the solar abundance must be in the gaseous form in the photodissociation region (PDR), suggesting that efficient dust destruction is undergoing even in the PDR and that part of silicon atoms may be contained in volatile forms in dust grains. The [OI] 63um and [CII] 158um emissions are too weak relative to [OI] 146um to be accounted for by standard PDR models. We propose a simple model, in which overlapping PDR clouds along the line of sight absorb the [OI] 63um and [CII] 158um emissions, and show that the proposed model reproduces the observed line intensities fairly well. In the sigma Sco region, we have detected 3 fine-structure lines, [OI] 63um, [NII] 122um, and [CII] 158um, and derived that 30-80% of the [CII] emission comes from the ionized gas. The upper limit of the [SiII] 35um is compatible with the solar abundance relative to nitrogen and no useful constraint on the gaseous Si is obtained for the sigma Sco region.



قيم البحث

اقرأ أيضاً

Recent studies have confirmed the presence of buckminsterfullerene (C$_{60}$) in different interstellar and circumstellar environments. However, several aspects regarding C$_{60}$ in space are not well understood yet, such as the formation and excita tion processes, and the connection between C$_{60}$ and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper we study several photodissociation regions (PDRs) where C$_{60}$ and PAHs are detected and the local physical conditions are reasonably well constrained, to provide observational insights into these questions. C$_{60}$ is found to emit in PDRs where the dust is cool ($T_d = 20-40$ K) and even in PDRs with cool stars. These results exclude the possibility for C$_{60}$ to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C$_{60}$ emission are spatially uncorrelated and that C$_{60}$ is present in PDRs where the physical conditions (in terms of radiation field and hydrogen density) allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also find trends indicative of an increase in C$_{60}$ abundance within individual PDRs, but these trends are not universal. These results support models where the dehydrogenation of carbonaceous species is the first step towards C$_{60}$ formation. However, this is not the only parameter involved and C$_{60}$ formation is likely affected by shocks and PDR age.
We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in Photodissociation regions (PDRs) undergo external heating which, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to its initial colunm density, the temperature of the heated surface and the ratio of the ``turn-on time $t_{FUV}$ of the heating flux on a clump to its initial sound crossing-time $t_{c}$. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the evolution of turbulence-generated and pressure-confined clumps in PDRs. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photoevaporation timescales, $sim 10^{4-5}$ years for a 1 M$_{odot}$ clump in a typical star-forming region. Clumps that are confined by an interclump medium may either get completely photoevaporated, or may preserve a shielded core with a warm, dissociated, protective shell that absorbs the incident FUV flux. We compare our results with observations of some well-studied PDRs: the Orion Bar, M17SW, NGC 2023 and the Rosette Nebula. The data are consistent with both interpretations of clump origin, with a slight indication for favouring the turbulent model for clumps over pressure-confined clumps.
We derive total (atomic + molecular) hydrogen densities in giant molecular clouds (GMCs) in the nearby spiral galaxy M33 using a method that views the atomic hydrogen near regions of recent star formation as the product of photodissociation. Far-UV p hotons emanating from a nearby OB association produce a layer of atomic hydrogen on the surfaces of nearby GMCs. Our approach provides an estimate of the total hydrogen density in these GMCs from observations of the excess far-UV emission that reaches the GMC from the OB association, and the excess 21-cm radio HI emission produced after these far-UV photons convert H2 into HI on the GMC surface. The method provides an alternative approach to the use of CO emission as a tracer of H2 in GMCs, and is especially sensitive to a range of density well below the critical density for CO(1-0) emission. We describe our PDR method in more detail and apply it using GALEX far-UV and VLA 21-cm radio data to obtain volume densities in a selection of GMCs in the nearby spiral galaxy M33. We have also examined the sensitivity of the method to the linear resolution of the observations used; the results obtained at 20 pc are similar to those for the larger set of data at 80 pc resolution. The cloud densities we derive range from 1 to 500 cm-3, with no clear dependence on galactocentric radius; these results are generally similar to those obtained earlier in M81, M83, and M101 using the same method.
131 - M. Compiegne 2008
Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H_2 formation. With S pitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from dense to diffuse properties at the small spatial scale of the dense illuminated ridge.
We have obtained wide-field thermal infrared (IR) images of the Carina Nebula, using the SPIREX/Abu telescope at the South Pole. Emission from poly-cyclic aromatic hydrocarbons (PAHs) at 3.29um, a tracer of photodissociation regions (PDRs), reveals m any interesting well defined clumps and diffuse regions throughout the complex. Near-IR images (1--2um), along with images from the Midcourse Space Experiment (MSX) satellite (8--21um) were incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole Nebula and were mapped in 12CO(2--1) and (1--0) using the SEST. Analysis of their physical properties reveals they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430-5931 in the southern molecular cloud, shows strong 3.29-, 8- and 21-um emission, the spectral energy distribution (SED) revealing the location of an ultra-compact (UC) HII region. The northern part of the nebula is complicated, with PAH emission inter-mixed with mid-IR dust continuum emission. Several point sources are located here and through a two-component black-body fit to their SEDs, we have identified 3 possible UC HII regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is on-going and not halted by the intense radiation from the surrounding young massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا