ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton and Deep Optical Observations of the OTELO fields: the Groth-Westphal Strip

59   0   0.0 ( 0 )
 نشر من قبل Miguel S\\'anchez-Portal
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

OTELO (OSIRIS Tunable Emission Line Object Survey) will be carried out with the OSIRIS instrument at the 10 m GTC telescope at La Palma, and is aimed to be the deepest and richest survey of emission line objects to date. The deep narrow-band optical data from OSIRIS will be complemented by means of additional observations that include: (i) an exploratory broad-band survey that is already being carried out in the optical domain, (ii) FIR and sub-mm observations to be carried with the Herschel space telescope and the GTM, and (iii) deep X-Ray observations from XMM-Newton and Chandra.Here we present a preliminary analysis of public EPIC data of one of the OTELO targets,the Groth-Westphal strip, gathered from the XMM-Newton Science Archive (XSA). EPIC images are combined with optical BVRI data from our broadband survey carried out with the 4.2m WHT at La Palma. Distance-independent diagnostics (involving X/O ratio, hardness ratios, B/T ratio) are tested.



قيم البحث

اقرأ أيضاً

126 - Ying-He Zhao 2009
We present $ugR$ optical images taken with the MMT/Megacam and the Subaru/Suprime of the Extended Groth Strip survey. The total survey covers an area of about $sim 1$ degree$^2$, including four sub-fields and is optimized for the study of galaxies at $zsim3$. Our methods for photometric calibration in AB magnitudes, the limiting magnitude and the galaxy number count are described. A sample of 1642 photometrically selected candidate LBGs to an apparent $R_{AB}$ magnitude limit of 25.0 is present. The average sky surface density of our LBGs sample is $sim$ 1.0 arcmin$^{-2}$, slightly higher than the previous finding.
72 - A. Georgakakis 2006
We discuss the optical and X-ray spectral properties of the sources detected in a single 200ks Chandra pointing in the Groth-Westphal Strip region. Optical identifications and spectroscopic redshifts are primarily from the DEEP2 survey. This is compl emented with deeper (r~26mag) multi-waveband data (ugriz) from the Canada France Hawaii Legacy Survey to estimate photometric redshifts and to optically identify sources fainter than the DEEP2 magnitude limit (R(AB)~24.5mag). We focus our study on the 2-10keV selected sample comprising 97 sources to the limit ~8e-16erg/s/cm2, this being the most complete in terms of optical identification rate (86%) and redshift determination fraction (63%; both spectroscopic and photometric). We first construct the redshift distribution of the sample which shows a peak at z~1. This is in broad agreement with models where less luminous AGNs evolve out to z~1 with powerful QSOs peaking at higher redshift, z~2. Evolution similar to that of broad-line QSOs applied to the entire AGN population (both type-I and II) does not fit the data. We also explore the observed N_H distribution of the sample and estimate a fraction of obscured AGN (N_H>1e22) of ~48%. This is found to be consistent with both a luminosity dependent intrinsic N_H distribution, where less luminous systems comprise a higher fraction of type-II AGNs, and models with a fixed ratio 2:1 between type-I and II AGNs. We further compare our results with those obtained in deeper and shallower surveys. We argue that a luminosity dependent parametrisation of the intrinsic N_H distribution is required to account for the fraction of obscured AGN observed in different samples over a wide range of fluxes.
199 - K. Nandra , E.S. Laird , J.A. Aird 2015
We present the results of deep chandra imaging of the central region of the Extended Groth Strip, the AEGIS-X Deep (AEGIS-XD) survey. When combined with previous chandra observations of a wider area of the strip, AEGIS-X Wide (AEGIS-XW; Laird et~al. 2009), these provide data to a nominal exposure depth of 800ks in the three central ACIS-I fields, a region of approximately $0.29$~deg$^{2}$. This is currently the third deepest X-ray survey in existence, a factor $sim 2-3$ shallower than the Chandra Deep Fields (CDFs) but over an area $sim 3$ times greater than each CDF. We present a catalogue of 937 point sources detected in the deep chandra observations. We present identifications of our X-ray sources from deep ground-based, Spitzer, GALEX and HST imaging. Using a likelihood ratio analysis, we associate multi band counterparts for 929/937 of our X-ray sources, with an estimated 95~% reliability, making the identification completeness approximately 94~% in a statistical sense. Reliable spectroscopic redshifts for 353 of our X-ray sources are provided predominantly from Keck (DEEP2/3) and MMT Hectospec, so the current spectroscopic completeness is $sim 38$~per cent. For the remainder of the X-ray sources, we compute photometric redshifts based on multi-band photometry in up to 35 bands from the UV to mid-IR. Particular attention is given to the fact that the vast majority the X-ray sources are AGN and require hybrid templates. Our photometric redshifts have mean accuracy of $sigma=0.04$ and an outlier fraction of approximately 5%, reaching $sigma=0.03$ with less than 4% outliers in the area covered by CANDELS . The X-ray, multi-wavelength photometry and redshift catalogues are made publicly available.
We present the AEGIS-X survey, a series of deep Chandra ACIS-I observations of the Extended Groth Strip. The survey comprises pointings at 8 separate positions, each with nominal exposure 200ks, covering a total area of approximately 0.67 deg2 in a s trip of length 2 degrees. We describe in detail an updated version of our data reduction and point source detection algorithms used to analyze these data. A total of 1325 band-merged sources have been found to a Poisson probability limit of 4e-6, with limiting fluxes of 5.3e-17 erg/cm2/s in the soft (0.5-2 keV) band and 3.8e-16 erg/cm2/s in the hard (2-10 keV) band. We present simulations verifying the validity of our source detection procedure and showing a very small, <1.5%, contamination rate from spurious sources. Optical/NIR counterparts have been identified from the DEEP2, CFHTLS, and Spitzer/IRAC surveys of the same region. Using a likelihood ratio method, we find optical counterparts for 76% of our sources, complete to R(AB)=24.1, and, of the 66% of the sources that have IRAC coverage, 94% have a counterpart to a limit of 0.9 microJy at 3.6 microns (m(AB)=23.8). After accounting for (small) positional offsets in the 8 Chandra fields, the astrometric accuracy of the Chandra positions is found to be 0.8 arcsec RMS, however this number depends both on the off-axis angle and the number of detected counts for a given source. All the data products described in this paper are made available via a public website.
Fundamental Plane studies provide an excellent means of understanding the evolutionary history of early-type galaxies. Using the Low Resolution Imaging Spectrograph on the Keck telescope, we obtained internal stellar kinematic information for 36 fiel d galaxies in the Groth Strip--21 early-type and 15 disk galaxies. Their redshifts range from 0.3--1.0, with a median redshift 0.8. The slope of the relation shows no difference compared with the local slope. However, there is significant evolution in the zero-point offset; an offset due to evolution in magnitude requires a 2.4 magnitude luminosity brightening at z=1. We see little differences of the offset with bulge fraction, which is a good surrogate for galaxy type. Correcting for the luminosity evolution reduces the orthogonal scatter in the Fundamental Plane to 8%, consistent with the local scatter. This scatter is measured for our sample, and does not include results from other studies which may have different selection effects. The difference in the degree of evolution between our field sample and published cluster galaxies suggests a more recent formation epoch--around z=1.5 for field galaxies compared to z>2.0 for cluster galaxies. The magnitude difference implies that the field early-type galaxies are about 2 Gyr younger than the cluster ellipticals using standard single-burst models. However, the same models imply a significant change in the rest-frame U-B color from then to present, which is not seen in our sample. Continuous low-level star formation, however, would serve to explain the constant colors over this large magnitude change. A consistent model has 7% of the stellar mass created after the initial burst, using an exponentially decaying star formation rate with an e-folding time of 5 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا