ترغب بنشر مسار تعليمي؟ اضغط هنا

The in-flight spectroscopic performance of the Swift XRT CCD camera

88   0   0.0 ( 0 )
 نشر من قبل Julian Osborne
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Swift X-ray Telescope (XRT) focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 144 eV FWHM at 6.5 keV. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Loss of temperature control motivated a laboratory program to re-optimize the CCD substrate voltage, we describe the small changes in the CCD response that would result from use of a substrate voltage of 6V.



قيم البحث

اقرأ أيضاً

The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.
571 - O. Godet 2008
(Abbreviated) We show that the XRT spectral response calibration was complicated by various energy offsets in photon counting (PC) and windowed timing (WT) modes related to the way the CCD is operated in orbit (variation in temperature during observa tions, contamination by optical light from the sunlit Earth and increase in charge transfer inefficiency). We describe how these effects can be corrected for in the ground processing software. We show that the low-energy response, the redistribution in spectra of absorbed sources, and the modelling of the line profile have been significantly improved since launch by introducing empirical corrections in our code when it was not possible to use a physical description. We note that the increase in CTI became noticeable in June 2006 (i.e. 14 months after launch), but the evidence of a more serious degradation in spectroscopic performance (line broadening and change in the low-energy response) due to large charge traps (i.e. faults in the Si crystal) became more significant after March 2007. We describe efforts to handle such changes in the spectral response. Finally, we show that the commanded increase in the substrate voltage from 0 to 6V on 2007 August 30 reduced the dark current, enabling the collection of useful science data at higher CCD temperature (up to -50C). We also briefly describe the plan to recalibrate the XRT response files at this new voltage.
The X-ray telescope on board the Swift satellite for gamma-ray burst astronomy has been exposed to the radiation of the space environment since launch in November 2004. Radiation causes damage to the detector, with the generation of dark current and charge trapping sites that result in the degradation of the spectral resolution and an increase of the instrumental background. The Swift team has a dedicated calibration program with the goal of recovering a significant proportion of the lost spectroscopic performance. Calibration observations of supernova remnants with strong emission lines are analysed to map the detector charge traps and to derive position-dependent corrections to the measured photon energies. We have achieved a substantial recovery in the XRT resolution by implementing these corrections in an updated version of the Swift XRT gain file and in corresponding improvements to the Swift XRT HEAsoft software. We provide illustrations of the impact of the enhanced energy resolution, and show that we have recovered most of the spectral resolution lost since launch.
We have designed, constructed and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back illuminated devices with 13 um x 13 um pixels. The camera covers an area of 4.6 deg x 3.6 deg on the sky with an active area of 9.6 square degrees. This camera has been installed at the prime focus of the telescope, commissioned, and scientific quality observations on the Palomar-QUEST Variability Sky Survey were started in September of 2003. The design considerations, construction features, and performance parameters of this camera are described in this paper.
323 - A. Moretti 2005
We present a catalogue of refined positions of 68 gamma ray burst (GRB) afterglows observed by the Swift X-ray Telescope (XRT) from the launch up to 2005 Oct 16. This is a result of the refinement of the XRT boresight calibration. We tested this corr ection by means of a systematic study of a large sample of X-ray sources observed by XRT with well established optical counterparts. We found that we can reduce the systematic error radius of the measurements by a factor of two, from 6.5 to 3.2 (90% of confidence). We corrected all the positions of the afterglows observed by XRT in the first 11 months of the Swift mission. This is particularly important for the 37 X-ray afterglows without optical counterpart. Optical follow-up of dark GRBs, in fact, will be more efficient with the use of the more accurate XRT positions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا