ترغب بنشر مسار تعليمي؟ اضغط هنا

Luminous AGB stars in nearby galaxies. A study using Virtual Observatory tools

84   0   0.0 ( 0 )
 نشر من قبل Paraskevi Tsalmantza
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. This study focuses on very luminous Mbol<-6.0 mag AGB stars with J-Ks>1.5 mag and H-Ks>0.4 mag in the LMC, SMC, M31, and M33 from 2MASS data. Methods.The data were taken from the 2MASS All-Sky Point Source catalogue archive. We used Virtual Observatory tools and took advantage of its capabilities at various stages in the analysis. Results. It is well known that stars with the colors we selected correspond mainly to carbon stars. Although the most luminous AGBs detected here contain a large number of carbon stars,they are not included in existing catalogues produced from data in the optical domain, where they are not visible since they are dust-enshrouded. A comparison of the AGB stars detected with combined near and mid-infrared data from MSX and 2MASS in the LMC shows that 10% of the bright AGB stars are bright carbon stars never detected before and that the other 50% are OH/IR oxygen rich stars, whereas the 40% that remain were not cross-matched. Conclusions. The catalogues of the most luminous AGB stars compiled here are an important complement to existing data. In the LMC, these bright AGB stars are centrally located, whereas they are concentrated in an active star-formation ring in M31. In the SMC and M33, there are not enough of them to draw definite conclusions, although they tend to be centrally located. Their luminosity functions are similar for the four galaxies we studied.

قيم البحث

اقرأ أيضاً

Ultracool dwarfs (UCDs) are objects with spectral types equal or later than M7. Most of them have been discovered using wide-field imaging surveys. The Virtual Observatory (VO) has proven to be of great utility to efficiently exploit these astronomic al resources. We aim to validate a VO methodology designed to discover and characterize UCDs in the J-PLUS photometric survey. J-PLUS is a multiband survey carried out with the wide angle T80Cam optical camera mounted on the 0.83-m telescope JAST/T80 in the Observatorio Astrofisico de Javalambre. In this work we make use of the Internal Data Release (IDR) covering 528 deg$^2$. We complement J-PLUS photometry with other catalogues in the optical and IR using VOSA, a VO tool that estimates physical parameters from the spectral energy distribution fitting to collections of theoretical models. Objects identified as UCDs are distinguished from background M giants and highly reddened stars using parallaxes and proper motions from Gaia DR2. We identify 559 UCDs, ranging from i=16.2 to 22.4 mag, of which 187 are candidate UCDs not previously reported in the literature. This represents an increase in the number of known UCDs of about 50% in the studied region of the sky, particularly at the faint end of our sensitivity, which is interesting as reference for future wide and deep surveys such as Euclid. Three candidates constitute interesting targets for exoplanet surveys because of their proximity (<40 pc). We also analyze the kinematics of UCDs in our catalogue and find evidence that it is consistent with a Galactic thin-disk population, except for 6 objects that might be members of the thick disk. The results obtained validate the proposed methodology, which will be used in future J-PLUS and J-PAS releases. Considering the region of the sky covered by the IDR used, we foresee to discover 3,000-3,500 new UCDs at the end of the J-PLUS project.
The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30angstrom for LMC metallicity. Several possible explanations are discussed. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.
(abridged) A detailed study of the blue supergiant UIT005 (B2-2.5Ia+) in M33 is presented. The results of our quantitative spectral analysis indicate that the star is a very luminous, log(L/Lsun)~5.9 dex, and massive, M~50 Msun, object, showing a ver y high nitrogen-to-oxygen ratio in its surface (N/O~8, by mass). Based on the derived Mg and Si abundances, we argue that this high N/O ratio cannot be the result of an initial low O content due to its location on the disk of M33, known to present a steep metallicity gradient. In combination with the He abundance, the most plausible interpretation is that UIT005 is in an advanced stage of evolution, showing in its surface N enrichment and O depletion resulting from mixing with CNO processed material from the stellar interior. A comparison with the predictions of current stellar evolutionary models indicates that there are significant discrepancies, in particular with regard to the degree of chemical processing, with the models predicting a much lower degree of O depletion than observed. At the same time, the mass-loss rate derived in our analysis is an order of magnitude lower than the values considered in the evolutionary calculations. Based on a study of the surrounding stellar population and the nearby cluster NGC588, using WFPC2 photometry, we suggest that UIT005 could be in fact a runaway star from this cluster.
111 - P. Padovani 2004
We use Virtual Observatory (VO) tools to identify optically faint, obscured (i.e., type 2) active galactic nuclei (AGN) in the two Great Observatories Origins Deep Survey (GOODS) fields. By employing publicly available X-ray and optical data and cata logues we discover 68 type 2 AGN candidates. The X-ray powers of these sources are estimated by using a previously known correlation between X-ray luminosity and X-ray-to-optical flux ratio. Thirty-one of our candidates have high estimated powers (Lx > 10^44 erg/s) and therefore qualify as optically obscured quasars, the so-called ``QSO 2. Based on the derived X-ray powers, our candidates are likely to be at relatively high redshifts, z ~ 3, with the QSO 2 at z ~ 4. By going ~ 3 magnitudes fainter than previously known type 2 AGN in the two GOODS fields we are sampling a region of redshift - power space which was previously unreachable with classical methods. Our method brings to 40 the number of QSO 2 in the GOODS fields, an improvement of a factor ~ 4 when compared to the only 9 such sources previously known. We derive a QSO 2 surface density down to 10^-15 erg/cm^2/s in the 0.5 - 8 keV band of >~ 330/deg^2, ~ 30% of which is made up of previously known sources. This is larger than current estimates and some predictions and suggests that the surface density of QSO 2 at faint flux limits has been underestimated. This work demonstrates that VO tools are mature enough to produce cutting-edge science results by exploiting astronomical data beyond ``classical identification limits (R <~ 25) with interoperable tools for statistical identification of sources using multiwavelength information.
The cluster luminosity function (CLF) is one of the most important diagnostics in the study of old globular and young compact star cluster populations. We are currently using ASTROVIRTEL to obtain CLFs in several optical and/or near-infrared passband s, and colour distributions. This will provide us with a powerful analytical tool for the determination of the violent star and cluster formation history of galaxies: we will address questions related to the universality of the globular CLF, the time-scale of low-mass, low-luminosity star cluster depletion and its observability, and environmental effects affecting the shape of the CLFs and the efficiency of the depletion process. This has required the development of complex data mining tools, which are currently being incorporated in ASTROVIRTELs querator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا