ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances in the high-redshift Intergalactic Medium

106   0   0.0 ( 0 )
 نشر من قبل Joop Schaye
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The enrichment of the intergalactic medium (IGM) with heavy elements provides us with a record of past star formation and with an opportunity to study the interactions between galaxies and their environments. We summarize current data analysis methods and observational constraints on abundances in the diffuse, high-redshift (z > 2) IGM. This review is targeted at interested outsiders and attempts to answer the following questions: Why should you care? What do we want to measure? How do we do it? What do we know? What are the common misconceptions?

قيم البحث

اقرأ أيضاً

The low-redshift Ly-alpha forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our rec ent Hubble Space Telescope (HST) observations and interpretation of low-z Ly-alpha clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Omega-baryon. Our HST/GHRS detections of 70 Ly-alpha absorbers with N_HI > 10^12.6 cm-2 along 11 sightlines covering pathlength Delta(cz) = 114,000 km/s show f(>N_HI) ~ N_HI^{-0.63 +- 0.04} and a line frequency dN/dz = 200 +- 40 for N_HI > 10^12.6 cm-2 (one every 1500 km/s of redshift). A group of strong absorbers toward PKS 2155-304 may be associated with gas (400-800) h_75^-1 kpc from 4 large galaxies, with low metallicity (< 0.003 solar) and D/H < 2 x 10^-4. At low-z, we derive a metagalactic ionizing radiation field from AGN of J_0 = 1.3^{+0.8 -0.5} x 10^-23 ergs/cm2/s/Hz/sr and a Ly-alpha-forest baryon density Omega-baryon = (0.008 +- 0.004) h_75^-1 [J_-23 N_14 b_100]^{1/2} For clouds of characteristic size b = (100 kpc)b_100.
88 - Shiv K. Sethi 2004
Recent years have seen major advances in understanding the state of the intergalactic medium (IGM) at high redshift. Some aspects of this understanding are reviewed here. In particular, we discuss: (1) Different probes of IGM like Gunn-Peterson test, CMBR anisotropies, and neutral hydrogen emission from reionization, and (2) some models of reionization of the universe.
The intergalactic medium (IGM) prior to the epoch of reionization consists mostly of neutral hydrogen gas. Ly-alpha photons produced by early stars resonantly scatter off hydrogen atoms, causing energy exchange between the radiation field and the gas . This interaction results in moderate heating of the gas due to the recoil of the atoms upon scattering, which is of great interest for future studies of the pre-reionization IGM in the HI 21 cm line. We investigate the effect of this Ly-alpha heating in the IGM with linear density, temperature, and velocity perturbations. Perturbations smaller than the diffusion length of photons could be damped due to heat conduction by Ly-alpha photons. The scale at which damping occurs and the strength of this effect depend on various properties of the gas, the flux of Ly-alpha photons and the way in which photon frequencies are redistributed upon scattering. To find the relevant length scale and the extent to which Ly-alpha heating affects perturbations, we calculate the gas heating rates by numerically solving linearized Boltzmann equations in which scattering is treated by the Fokker-Planck approximation. We find that (1) perturbations add a small correction to the gas heating rate, and (2) the damping of temperature perturbations occurs at scales with comoving wavenumber k>10^4 Mpc^{-1}, which are much smaller than the Jeans scale and thus unlikely to substantially affect the observed 21 cm signal.
The role played by the intergalactic medium (IGM) in the X-ray absorption towards high-redshift sources has recently drawn more attention in spectral analysis studies. Here, we study the X-ray absorption towards 15 flat-spectrum radio quasars at $z>2 $, relying on high counting statistic ($gtrsim10,000$ photons) provided by XMM-Newton, with additional NuSTAR (and simultaneous Swift-XRT) observations when available. Blazars can be confidently considered to have negligible X-ray absorption along the line of sight within the host galaxy, likely swept by the kpc-scale relativistic jet. This makes our sources ideal for testing the absorption component along the IGM. Our new approach is to revisit the origin of the soft X-ray spectral hardening observed in high-z blazars in terms of X-ray absorption occurring along the IGM, with the help of a low-z sample used as comparison. We verify that the presence of absorption in excess of the Galactic value is the preferred explanation to explain the observed hardening, while intrinsic energy breaks, predicted by blazars emission models, can easily occur out of the observing energy band in most sources. First, we perform an indirect analysis comparing the inferred amount of absorption in excess of the Galactic value with a simulated IGM absorption contribution, that increases with redshift and includes both a minimum component from diffuse IGM metals, and the additional contribution of discrete denser intervening regions. Then, we directly investigate the warm-hot IGM with a spectral model on the best candidates of our sample, obtaining an average IGM density of $n_0=1.01^{+0.53}_{-0.72}times10^{-7}$ cm$^{-3}$ and temperature of $log(T/text{K})=6.45^{+0.51}_{-2.12}$. A more dedicated study is currently beyond reach, but our results can be used as a stepping stone for future more accurate analysis, involving Athena.
Massive stars at redshifts z > 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultra-violet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray luminous (L_X 1e38 erg/s) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy (proportional to the inverse cube), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z > 6 using a Monte Carlo model for a coeval stellar population of main sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of black-body and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray luminous HMXBs, and deduce fitting formulae for the boost in the populations ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of ~100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high redshift galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا