ترغب بنشر مسار تعليمي؟ اضغط هنا

Close Binary Interactions of Intermediate-Mass Black Holes: Possible Ultra-Luminous X-ray Sources?

65   0   0.0 ( 0 )
 نشر من قبل Laura Blecha
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Blecha




اسأل ChatGPT حول البحث

While many observed ultra-luminous X-ray sources (ULXs, Lx > 10^39 erg s^-1) could be extragalactic X-ray binaries (XRBs) emitting close to the Eddington limit, the highest-luminosity ULXs (Lx > 3x10^39 erg s^-1) exceed the isotropic Eddington luminosity for even high-stellar-mass accreting black hole XRBs. It has been suggested that these highest-luminosity ULXs may contain accreting intermediate-mass black hole (IMBH) binaries. We consider this hypothesis for dense, young (about 100 Myr) stellar clusters where we assume that a 50-500 solar mass central IMBH has formed through runaway growth of a massive star. Using numerical simulations of the dynamics and evolution of the central black holes captured companions, we obtain estimates of the incidence of mass transfer phases and possible ULX activity throughout the IMBHs evolutionary history. We find that, although it is common for the central black hole to acquire binary companions, there is a very low probability that these interacting binaries will become observable ULX sources.

قيم البحث

اقرأ أيضاً

The mass transfer in binaries with massive donors and compact companions, when the donors rapidly evolve after their main sequence, is one of the dominant formation channels of merging double stellar-mass black hole binaries. This mass transfer was p reviously postulated to be unstable and was expected to lead to a common envelope event. The common envelope event then would end with either double black hole formation, or with the merger of the two stars. We re-visit the stability of this mass transfer, and find that for a large range of the binary orbital separations this mass transfer is stable. This newly found stability allows us to reconcile the theoretical rate for double black hole binary mergers predicted by population synthesis studies, and the empirical rate obtained by LIGO. Futhermore, the stability of the mass transfer leads to the formation of ultra-luminous X-ray sources. The theoretically predicted formation rates of ultra-luminous X-ray sources powered by a stellar-mass BH, as well as the range of produced X-ray luminosity, can explain the observed bright ultra-luminous X-ray sources.
192 - Andrew D. Sutton 2012
We present the results from an X-ray and optical study of a new sample of eight extreme luminosity ultraluminous X-ray source (ULX) candidates, which were selected as the brightest ULXs (with L_X > 5x10^40 erg/s) located within 100 Mpc identified in a cross correlation of the 2XMM-DR1 and RC3 catalogues. These objects are so luminous that they are difficult to describe with current models of super-Eddington accretion onto all but the most massive stellar remnants; hence they are amongst the most plausible candidates to host larger, intermediate-mass black holes (IMBHs). Two objects are luminous enough in at least one observation to be classed as hyperluminous X-ray source (HLX) candidates, including one persistent HLX in an S0 galaxy that (at 3x10^41 erg/s) is the second most luminous HLX yet detected. The remaining seven sources are located in spiral galaxies, and several appear to be closely associated with regions of star formation as is common for many less luminous ULXs. However, the X-ray characteristics of these extreme ULXs appear to diverge from the less luminous objects. They are typically harder, possessing absorbed power-law continuum spectra with photon indexes ~ 1.7, and are potentially more variable on short timescales, with data consistent with ~ 10-20 per cent rms variability on timescales of 0.2-2 ks. These properties appear consistent with the sub-Eddington hard state, which given the observed luminosities of these objects suggests the presence of IMBHs with masses in the range 10^3-10^4 M_Sun. As such, this strengthens the case for these brightest ULXs as good candidates for the eventual conclusive detection of the highly elusive IMBHs. However, we caution that a combination of the highest plausible super-Eddington accretion rates and the largest permitted stellar black hole remnants cannot be ruled out without future, improved observations.
327 - Yoshiyuki Inoue 2016
The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are $36^{+5}_{-4}M_{odot}$ and $29^{+4}_{-4}M_{ odot}$. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as $5.8 ({t}_{rm ULX}/{0.1 rm Myr})^{-1} lambda^{-0.6} exp{(-0.30lambda)} {rm Gpc^{-3} yr^{-1}}$, where $t_{rm ULX}$ is the typical duration of the ULX phase and $lambda$ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of $5M_odotle M_{rm BH}le100M_odot$ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.
108 - Xin-Lin Zhou 2014
Ultra-luminous X-ray sources (ULXs) are off-nuclear X-ray sources in nearby galaxies with X-ray luminosities $geq$ 10$^{39}$ erg s$^{-1}$. The measurement of the black hole (BH) masses of ULXs is a long-standing problem. Here we estimate BH masses in a sample of ULXs with XMM-Newton observations using two different mass indicators, the X-ray photon index and X-ray variability amplitude based on the correlations established for active galactic nuclei (AGNs). The BH masses estimated from the two methods are compared and discussed. We find that some extreme high-luminosity ($L_{rm X} >5times10^{40}$ erg s$^{-1}$) ULXs contain the BH of 10$^{4}$-10$^{5}$ $M_odot$. The results from X-ray variability amplitude are in conflict with those from X-ray photon indices for ULXs with lower luminosities. This suggests that these ULXs generally accrete at rates different from those of X-ray luminous AGNs, or they have different power spectral densities of X-ray variability. We conclude that most of ULXs accrete at super-Eddington rate, thus harbor stellar-mass BH.
90 - Rob Fender 2012
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stell ar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا