ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dark Galaxy in the Virgo Cluster Imaged at 21-cm

51   0   0.0 ( 0 )
 نشر من قبل R. F. Minchin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. F. Minchin




اسأل ChatGPT حول البحث

Dark Matter supposedly dominates the extragalactic, yet no totally dark structure of galactic proportions has ever been convincingly identified. Earlier (Minchin et al. 2005) we suggested that VIRGOHI 21, a 21-cm source we found in the Virgo Cluster at Jodrell Bank using single-dish observations (Davies et al. 2004), was probably such a dark galaxy because of its broad line-width (~ 200 km/s) unaccompanied by any visible gravitational source to account for it. Now we have managed to image VIRGOHI 21 in the neutral-hydrogen line, and indeed we find what appears to be a dark, edge-on, spinning disc with the mass and diameter of a typical spiral galaxy. Moreover the disc has unquestionably interacted with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor invariably responsible for such a feature. Published numerical models (Vollmer, Huchtmeier & van Driel 2005) of NGC 4254 call for a close interaction ~ 10^8 years ago with a perturber of 10^11 solar masses. This we take as completely independent evidence for the massive nature of VIRGOHI 21.

قيم البحث

اقرأ أيضاً

46 - Robert Minchin 2007
Many observations indicate that dark matter dominates the extra-galactic Universe, yet no totally dark structure of galactic proportions has ever been convincingly identified. Previously we have suggested that VIRGOHI 21, a 21-cm source we found in t he Virgo Cluster using Jodrell Bank, was a possible dark galaxy because of its broad line-width (~200 km/s) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral-hydrogen line and find what could be a dark, edge-on, spinning disk with the mass and diameter of a typical spiral galaxy. Moreover, VIRGOHI 21 has unquestionably been involved in an interaction with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Numerical models of NGC 4254 call for a close interaction ~10^8 years ago with a perturber of ~10^11 solar masses. This we take as additional evidence for the massive nature of VIRGOHI 21 as there does not appear to be any other viable candidate. We have also used the Hubble Space Telescope to search for stars associated with the HI and find none down to an I band surface brightness limit of 31.1 +/- 0.2 mag/sq. arcsec.
44 - Robert Minchin 2005
VIRGOHI21 is an HI source detected in the Virgo Cluster survey of Davies et al. (2004) which has a neutral hydrogen mass of 10^8 M_solar and a velocity width of Delta V_20 = 220 km/s. From the Tully-Fisher relation, a galaxy with this velocity width would be expected to be 12th magnitude or brighter; however deep CCD imaging has failed to turn up a counterpart down to a surface-brightness level of 27.5 B mag/sq. arcsec. The HI observations show that it is extended over at least 16 kpc which, if the system is bound, gives it a minimum dynamical mass of ~10^11 M_solar and a mass to light ratio of M_dyn/L_B > 500 M_solar/L_solar. If it is tidal debris then the putative parents have vanished; the remaining viable explanation is that VIRGOHI21 is a dark halo that does not contain the expected bright galaxy. This object was found because of the low column density limit of our survey, a limit much lower than that achieved by all-sky surveys such as HIPASS. Further such sensitive surveys might turn up a significant number of the dark matter halos predicted by Dark Matter models.
Dark matter interactions with massless or very light Standard Model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g. early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.
A recent observation points to an excess in the expected 21-cm brightness temperature from cosmic dawn. In this paper, we present an alternative explanation of this phenomenon, an interaction in the dark sector. Interacting dark energy models have be en extensively studied recently and there is a whole variety of such in the literature. Here we particularize to a specific model in order to make explicit the effect of an interaction.
Observations of the redshifted 21-cm signal (in absorption or emission) allow us to peek into the epoch of dark ages and the onset of reionization. These data can provide a novel way to learn about the nature of dark matter, in particular about the f ormation of small size dark matter halos. However, the connection between the formation of structures and 21-cm signal requires knowledge of stellar to total mass relation, escape fraction of UV photons, and other parameters that describe star formation and radiation at early times. This baryonic physics depends on the properties of dark matter and in particular in warm-dark-matter (WDM) models, star formation may follow a completely different scenario, as compared to the cold-dark-matter case. We use the recent measurements by the EDGES [J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in thesky-averaged spectrum,Nature (London) 555, 67 (2018).] to demonstrate that when taking the above considerations into account, the robust WDM bounds are in fact weaker than those given by the Lyman-$alpha$ forest method and other structure formation bounds. In particular, we show that resonantly produced 7 keV sterile neutrino dark matter model is consistent with these data. However, a holistic approach to modelling of the WDM universe holds great potential and may in the future make 21-cm data our main tool to learn about dark matter clustering properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا