ﻻ يوجد ملخص باللغة العربية
In this paper, we describe our vectorized and parallelized adaptive mesh refinement (AMR) N-body code with shared time steps, and report its performance on a Fujitsu VPP5000 vector-parallel supercomputer. Our AMR N-body code puts hierarchical meshes recursively where higher resolution is required and the time step of all particles are the same. The parts which are the most difficult to vectorize are loops that access the mesh data and particle data. We vectorized such parts by changing the loop structure, so that the innermost loop steps through the cells instead of the particles in each cell, in other words, by changing the loop order from the depth-first order to the breadth-first order. Mass assignment is also vectorizable using this loop order exchange and splitting the loop into $2^{N_{dim}}$ loops, if the cloud-in-cell scheme is adopted. Here, $N_{dim}$ is the number of dimension. These vectorization schemes which eliminate the unvectorized loops are applicable to parallelization of loops for shared-memory multiprocessors. We also parallelized our code for distributed memory machines. The important part of parallelization is data decomposition. We sorted the hierarchical mesh data by the Morton order, or the recursive N-shaped order, level by level and split and allocated the mesh data to the processors. Particles are allocated to the processor to which the finest refined cells including the particles are also assigned. Our timing analysis using the $Lambda$-dominated cold dark matter simulations shows that our parallel code speeds up almost ideally up to 32 processors, the largest number of processors in our test.
We have developed a simulation code with the techniques which enhance both spatial and time resolution of the PM method for which the spatial resolution is restricted by the spacing of structured mesh. The adaptive mesh refinement (AMR) technique sub
This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions,
We present the newly developed code, GAMER (GPU-accelerated Adaptive MEsh Refinement code), which has adopted a novel approach to improve the performance of adaptive mesh refinement (AMR) astrophysical simulations by a large factor with the use of th
We present GAMER-2, a GPU-accelerated adaptive mesh refinement (AMR) code for astrophysics. It provides a rich set of features, including adaptive time-stepping, several hydrodynamic schemes, magnetohydrodynamics, self-gravity, particles, star format
Large-scale finite element simulations of complex physical systems governed by partial differential equations crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing