ﻻ يوجد ملخص باللغة العربية
We present metallicity estimates for seven open clusters based on spectrophotometric indices from moderate-resolution spectroscopy. Observations of field giants of known metallicity provide a correlation between the spectroscopic indices and the metallicity of open cluster giants. We use chi^2 analysis to fit the relation of spectrophotometric indices to metallicity in field giants. The resulting function allows an estimate of the target-cluster giants metallicities with an error in the method of pm0.08 dex. We derive the following metallicities for the seven open clusters: NGC 1245, [m/H]=-0.14pm0.04; NGC 2099, [m/H]=+0.05pm0.05; NGC 2324, [m/H]=-0.06pm0.04; NGC 2539, [m/H]=-0.04pm0.03; NGC 2682 (M67), [m/H]=-0.05pm0.02; NGC 6705, [m/H]=+0.14pm0.08; NGC 6819, [m/H]=-0.07pm0.12. These metallicity estimates will be useful in planning future extra-solar planet transit searches since planets may form more readily in metal-rich environments.
Analyzing exoplanets detected by radial velocity or transit observations, we determine the multiplicity of exoplanet host stars in order to study the influence of a stellar companion on the properties of planet candidates. Matching the host stars of
We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of
We present a study of accurate stellar parameters and iron abundances for 39 giants and 16 dwarfs in the 13 open clusters IC2714, IC4651, IC4756, NGC2360, NGC2423, NGC2447 (M93), NGC2539, NGC2682 (M67), NGC3114, NGC3680, NGC4349, NGC5822, NGC6633. Th
We show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast
(Abridged) We discuss the design considerations of the EXPLORE (EXtra-solar PLanet Occultation REsearch) project, a series of transiting planet searches using 4-m-class telescopes to continuously monitor a single field of stars in the Galactic Plane