ترغب بنشر مسار تعليمي؟ اضغط هنا

SMC: Stellar Populations through deep CMDs

80   0   0.0 ( 0 )
 نشر من قبل Noelia Estella Donata No\\\"el
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Noelia E. D. Noel




اسأل ChatGPT حول البحث

We present deep color-magnitud diagrams (CMDs) reaching the oldest main-sequence turnoffs for 12 fields in the SMC. The {it B}-band and {it R}-band observations were performed using the 100-inch Irenee du Pont telescope at Las Campanas Observatory, Chile, during four different campaigns (2001-2004). Our fields cover a wide range of galactocentric distance ranging from $sim1deg$ to $sim4deg$ from the center of the galaxy and are located a different position angles. Photometry was carried out using DAOPHOT II/ALLSTAR/ALLFRAME. Teramo isochrones have been overlapped. All our unprecedented deep ground-based CMDs reach the old MS turnoffs with very good photometric accuracy. They clearly show stellar population gradients as a function of both galactocentric distance and position angle. The most conspicuous difference involves the young population (age$<$1 Gyr): the young MS is much more populated on the eastern fields, located on the SMC wing area, than on the western fields located at similar galactocentric radius. In addition, the main stellar population gets progresively older on average as we go to larger galactocentric radius.

قيم البحث

اقرأ أيضاً

74 - Reynier Peletier 2012
This is a summary of my lectures during the 2011 IAC Winter School in Puerto de la Cruz. I give an introduction to the field of stellar populations in galaxies, and highlight some new results. Since the title of the Winter School was {it Secular Evol ution of Galaxies} I mostly concentrate on nearby galaxies, which are best suited to study this theme. Of course, the understanding of stellar populations is intimately connected to understanding the formation and evolution of galaxies, one of the great outstanding problems of astronomy. We are currently in a situation where very large observational advances have been made in recent years. Galaxies have been detected up to a redshift of 10. A huge effort has to be made so that stellar population theory can catch up with observations. Since most galaxies are far away, information about them has to come from stellar population synthesis of integrated light. Here I will discuss how stellar evolution theory, together with observations in our Milky Way and Local Group, are used as building blocks to analyze these integrated stellar populations.
The vast volume of data generated by modern astronomical surveys offers test beds for the application of machine-learning. It is important to evaluate potential existing tools and determine those that are optimal for extracting scientific knowledge f rom the available observations. We explore the possibility of using clustering algorithms to separate stellar populations with distinct chemical patterns. Star clusters are likely the most chemically homogeneous populations in the Galaxy, and therefore any practical approach to identifying distinct stellar populations should at least be able to separate clusters from each other. We applied eight clustering algorithms combined with four dimensionality reduction strategies to automatically distinguish stellar clusters using chemical abundances of 13 elements. Our sample includes 18 stellar clusters with a total of 453 stars. We use statistical tests showing that some pairs of clusters are indistinguishable from each other when chemical abundances from the Apache Point Galactic Evolution Experiment (APOGEE) are used. However, for most clusters we are able to automatically assign membership with metric scores similar to previous works. The confusion level of the automatically selected clusters is consistent with statistical tests that demonstrate the impossibility of perfectly distinguishing all the clusters from each other. These statistical tests and confusion levels establish a limit for the prospect of blindly identifying stars born in the same cluster based solely on chemical abundances. We find that some of the algorithms we explored are capable of blindly identify stellar populations with similar ages and chemical distributions in the APOGEE data. Because some stellar clusters are chemically indistinguishable, our study supports the notion of extending weak chemical tagging that involves families of clusters instead of individual clusters
We present near infrared JHK imaging of the Small Magellanic Cloud compact H II region N81 using the ISAAC camera at the ESO Very Large Telescope (Antu). Our analysis of the stellar environment of this young massive star region reveals the presence o f three new stellar populations in the surrounding field which are mainly composed of low mass stars. The main population is best fitted by evolutionary models for about 2 solar mass stars with an age of 1 Gyr. We argue that these populations are not physically associated with the H II region N81. Instead they are the result of a number of low mass star forming events through the depth of the SMC south of its Shapleys wing. The populations can rather easily be probed due to the low interstellar extinction in that direction.
Studying the stellar populations in the outskirts of spiral galaxies can provide important constraints on their structure, formation, and evolution. To that end, we present VI photometry obtained with the Advanced Camera for Surveys for three fields located ~ 20 - 30 in projected distance southeast of M33s nucleus (corresponding to ~ 4 - 6 visual scale lengths or ~ 9 - 13 kpc in deprojected radius). The color-magnitude diagrams reveal a mixed stellar population whose youngest constituents have ages no greater than ~ 100 Myr and whose oldest members have ages of at least several Gyr. The presence of stars as massive as 3 - 5 Msun is consistent with global star formation thresholds in disk galaxies but could argue for a threshold in M33 that is on the low end of observational and theoretical expectations. The metallicity gradient as inferred by comparing the observed red giant branch (RGB) to the Galactic globular clusters is consistent with M33s inner disk gradient traced by several other studies. The surface density of RGB stars drops off exponentially with a radial scale length of 4.7 +/- 0.1. The scale length increases with age in a manner similar to the vertical scale height of several nearby late-type spirals. Based on the metallicity gradient, density gradient, and mixed nature of the stellar populations, we conclude these fields are dominated by a disk population although we cannot rule out the presence of a small halo component.
Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reeval uate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا