ﻻ يوجد ملخص باللغة العربية
The status of core collapse supernoova progenitor models is reviewed with a focus on some of the current uncertainties arising from the difficulties of modeling important macrophysics and microphysics. In particular, I look at issues concerned with modeling convection, the implications of the still uncertain 12C(alpha,gamma)16O reaction rate, the uncertainties involved with the incorporation of mass loss, rotation, and magnetic fields in the stellar models, and the possible generation of global instabilities in stellar models at the late evolutionary stages.
We present predictions for the gravitational-wave (GW) emission of three-dimensional supernova (SN) simulations performed for a 15 solar-mass progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor neutrino transport. The prog
We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino
Multidimensional hydrodynamic simulations of shell convection in massive stars suggest the development of aspherical perturbations that may be amplified during iron core-collapse. These perturbations have a crucial and qualitative impact on the delay
The recent discovery that the Fe-K line luminosities and energy centroids observed in nearby SNRs are a strong discriminant of both progenitor type and circumstellar environment has implications for our understanding of supernova progenitor evolution
Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of