ﻻ يوجد ملخص باللغة العربية
We explore physically self-consistent models of dusty molecular tori in Active Galactic Nuclei (AGN) with the goal of interpreting VLTI observations and fitting high resolution mid-IR spectral energy distributions (SEDs). The input dust distribution is analytically calculated by assuming hydrostatic equilibrium between pressure forces - due to the turbulent motion of the gas clouds - and gravitational and centrifugal forces as a result of the contribution of the nuclear stellar distribution and the central black hole. For a fully three-dimensional treatment of the radiative transfer problem through the tori we employ the Monte Carlo code MC3D. We find that in homogeneous dust distributions the observed mid-infrared emission is dominated by the inner funnel of the torus, even when observing along the equatorial plane. Therefore, the stratification of the distribution of dust grains - both in terms of size and composition - cannot be neglected. In the current study we only include the effect of different sublimation radii which significantly alters the SED in comparison to models that assume an average dust grain property with a common sublimation radius, and suppresses the silicate emission feature at 9.7 micron. In this way we are able to fit the mean SED of both type I and type II AGN very well. Our fit of special objects for which high angular resolution observations (less than 0.3 arcseconds) are available indicates that the hottest dust in NGC 1068 reaches the sublimation temperature while the maximum dust temperature in the low-luminosity AGN Circinus falls short of 1000 K.
The torus concept as an essential structural component of active galactic nuclei (AGN) is generally accepted. Here, the situation is discussed when the torus twisting by the radiation or wind transforms it into a dipole toroidal vortex which in turn
We describe improved modelling of the emission by dust in a toroidal--like structure heated by a central illuminating source within Active Galactic Nuclei (AGN). We chose a simple but realistic torus geometry, a flared disc, and a dust grain distribu
We studied the physical parameters of a sample comprising of all Spitzer/IRS public spectra of Seyfert galaxies in the mid-infrared (5.2-38$mu$m range) under the active galactic nuclei (AGN) unified model. We compare the observed spectra with $sim10^
We present 3-dimensional radiative transfer models for clumpy dust tori around AGN. Our method combines Monte Carlo simulations of individual dust clouds with the actual 3-dimensional distribution of clouds in the torus. The model has been applied to
The time-scales of the variabilities in changing look (CL) active galactic nuclei (AGNs) are usually at the order of years to tens of years (some of them are even shorter than one year), which are much shorter than the viscous timescale of a standard