ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of Coherent Cherenkov Radiation in Rock Salt: Implications for GZK Neutrino Underground Detector

62   0   0.0 ( 0 )
 نشر من قبل Radovan Milincic
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Milincic




اسأل ChatGPT حول البحث

This paper has been withdrawn by the author, due to a misunderstanding about publication.



قيم البحث

اقرأ أيضاً

79 - P. W. Gorham 2004
We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at th e Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of cubic km of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over two orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed a detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt-dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.
101 - P. Allison , J. Beatty , P. Chen 2009
We discuss design considerations and simulation results for IceRay, a proposed large-scale ultra-high energy (UHE) neutrino detector at the South Pole. The array is designed to detect the coherent Askaryan radio emission from UHE neutrino interaction s in the ice, with the goal of detecting the cosmogenic neutrino flux with reasonable event rates. Operating in coincidence with the IceCube neutrino detector would allow complete calorimetry of a subset of the events. We also report on the status of a testbed IceRay station which incorporates both ANITA and IceCube technology and will provide year-round monitoring of the radio environment at the South Pole.
The Jiangmen Underground Neutrino Observatory is proposed to determine neutrino mass hierarchy using a 20~ktonne liquid scintillator detector. Strict radio-purity requirements have been put forward for all the components of the detector. According to the MC simulation results, the radon dissolved in the water Cherenkov detector should be below 200~mBq/m$^3$. Radium, the progenitor of radon, should also be taken seriously into account. In order to measure the radium concentration in water, a radium measurement system, which consists of a radium extraction system, a radon emanation chamber and a radon concentration measurement system, has been developed. In this paper, the updated radon concentration in gas measurement system with a one-day-measurement sensitivity of $sim$5~mBq/m$^3$, the detail of the development of the radium concentration in water measurement system with a sensitivity of $sim$23~mBq/m$^3$ as well as the measurement results of Daya Bay water samples will be presented.
Existence of GZK neutrinos (ultra high energy neutrinos) have been justified although the flux is very low. A new method is desired to use a huge mass of a detector medium to detect them. A fundamental study of radar method was carried out to measure microwave reflection from electromagnetic energy deposit by X-ray irradiation in a small rock salt sample. The reflection rate of 1x10^-6 was found at the energy deposit of 1x10^19 eV which was proportional to square of the X-ray intensity suggesting the effect to be coherent scattering. The decay time of the reflection was several seconds. This effect implies a large scale natural rock salt formation could be utilized like a bubble chamber irradiated by radio wave instead of visible light to detect GZK neutrinos.
We present a measurement of the rate of correlated neutron captures in the WATCHBOY detector, deployed at a depth of approximately 390 meters water equivalent (m.w.e.) in the Kimballton Underground Research Facility (KURF). WATCHBOY consists of a cyl indrical 2 ton water target doped with 0.1% gadolinium, surrounded by a 40 ton undoped water hermetic shield. We present a comparison of our results with the expected rate of correlated neutron captures arising from high-energy neutrons incident on the outside of the WATCHBOY shield, predicted by a hybrid FLUKA/GEANT4-based simulation. The incident neutron energy distribution used in the simulation was measured by a fast neutron spectrometer, the 1.8-ton Multiplicity and Recoil Spectrometer (MARS) detector, at the same depth. We find that the measured detection rate of two correlated neutrons is consistent with that predicted by simulation. The result lends additional confidence in the detection technique used by MARS, and therefore in the MARS spectra as measured at three different depths. Confirmation of the fast neutron flux and spectrum is important as it helps validate the scaling models used to predict the fast neutron fluxes at different overburdens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا