ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Evolution of a Pulsating Neutron Star

56   0   0.0 ( 0 )
 نشر من قبل Dima Yakovlev
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.E. Gusakov -




اسأل ChatGPT حول البحث

We have derived a set of equations to describe the thermal evolution of a neutron star which undergoes small-amplitude radial pulsations. We have taken into account, in the frame of the General Theory of Relativity, the pulsation damping due to the bulk and shear viscosity and the accompanying heating of the star. The neutrino emission of a pulsating non-superfluid star and its heating due to the bulk viscosity are calculated assuming that both processes are determined by the non-equilibrium modified Urca process. Analytical and numerical solutions to the set of equations of the stellar evolution are obtained for linear and strongly non-linear deviations from beta-equilibrium. It is shown that a pulsating star may be heated to very high temperatures, while the pulsations damp very slowly with time (a power law damping for 100-1000 years), as long as the damping is determined by the bulk viscosity. The contribution of the shear viscosity to the damping becomes important in a rather cool star with a low pulsation energy.


قيم البحث

اقرأ أيضاً

We study the mutual influence of thermal and magnetic evolution in a neutron stars crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in t he crust, and we incorporate its effects in 2D cooling calculations. We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite--differences scheme in the radial direction), coupled to the thermal diffusion equation. We present the first long term 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first million years of a NSs life. As a consequence, all neutron stars born with fields larger than a critical value (about 5 10^13 G) reach similar field strengths (approximately 2-3 10^{13} G) at late times. Irrespectively of the initial magnetic field strength, after $10^6$ years the temperature becomes so low that the magnetic diffusion timescale becomes longer than the typical ages of radio--pulsars, thus resulting in apparently no dissipation of the field in old NS. We also confirm the strong correlation between the magnetic field and the surface temperature of relatively young NSs discussed in preliminary works. The effective temperature of models with strong internal toroidal components are systematically higher than those of models with purely poloidal fields, due to the additional energy reservoir stored in the toroidal field that is gradually released as the field dissipates.
In order to extract maximal information from neutron-star merger signals, both gravitational and electromagnetic, we need to ensure that our theoretical models/numerical simulations faithfully represent the extreme physics involved. This involves a r ange of issues, with the finite temperature effects regulating many of the relevant phenomena. As a step towards understanding these issues, we explore the conditions for $beta$-equilibrium in neutron star matter for the densities and temperatures reached in a binary neutron star merger. Using the results from our out-of-equilibrium merger simulation, we consider how different notions of equilibrium may affect the merger dynamics, raising issues that arise when attempting to account for these conditions in future simulations. These issues are both computational and conceptual. We show that the effects lead to, in our case, a softening of the equation of state in some density regions, and to composition changes that affect processes that rely on deviation from equilibrium, such as bulk viscosity, both in terms of the magnitude and the equilibration timescales inherent to the relevant set of reactions. We also demonstrate that it is difficult to determine exactly which equilibrium conditions are relevant in which regions of the matter due to the dependence on neutrino absorption, further complicating the calculation of the reactions that work to restore the matter to equilibrium.
We analyze the thermal conductivity of ions (equivalent to the conductivity of phonons in crystalline matter) in a neutron star envelope. We calculate the ion/phonon thermal conductivity in a crystal of atomic nuclei using variational formalism and performing momentum-space integration by Monte Carlo method. We take into account phonon-phonon and phonon-electron scattering mechanisms and show that phonon-electron scattering dominates at not too low densities. We extract the ion thermal conductivity in ion liquid or gas from literature. Numerical values of the ion/phonon conductivity are approximated by analytical expressions, valid for T>10^5 K and 10^5 g cm^-3 < rho < 10^14 g cm^-3. Typical magnetic fields B~10^12 G in neutron star envelopes do not affect this conductivity although they strongly reduce the electron thermal conductivity across the magnetic field. The ion thermal conductivity remains much smaller than the electron conductivity along the magnetic field. However, in the outer neutron star envelope it can be larger than the electron conductivity across the field, that is important for heat transport across magnetic field lines in cooling neutron stars. The ion conductivity can greatly reduce the anisotropy of heat conduction in outer envelopes of magnetized neutron stars.
Neutron stars are natural physical laboratories allowing us to study a plethora of phenomena in extreme conditions. In particular, these compact objects can have very strong magnetic fields with non-trivial origin and evolution. In many respects its magnetic field determines the appearance of a neutron star. Thus, understanding the field properties is important for interpretation of observational data. Complementing this, observations of diverse kinds of neutron stars enable us to probe parameters of electro-dynamical processes at scales unavailable in terrestrial laboratories. In this review we first briefly describe theoretical models of formation and evolution of magnetic field of neutron stars, paying special attention to field decay processes. Then we present important observational results related to field properties of different types of compact objects: magnetars, cooling neutron stars, radio pulsars, sources in binary systems. After that, we discuss which observations can shed light on obscure characteristics of neutron star magnetic fields and their behaviour. We end the review with a subjective list of open problems.
98 - O. A. Kuznetsov 1998
We consider the dependence of the internal structure of a neutron star in a close binary system on the semi-major axis of the binary orbit, focusing on the case when the Roche lobes of the components are nearly filled. We adopt a polytropic equation of state. The temporal evolution of the semi-major axis and its dependence on the mass ratio of the binary components and the polytropic index are determined. The calculation are carried out right up to the moment of contact, when quasi-stationary model becomes invalid. We analyze differences in the shapes of the pulses of gravitational radiation emitted by a pair of point masses and by a binary neutron star, taking into account its internal structure and tidal deformations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا