ترغب بنشر مسار تعليمي؟ اضغط هنا

The Decay of Accreting Triple Systems as Brown Dwarf Formation Scenario

32   0   0.0 ( 0 )
 نشر من قبل Stefan Umbreit
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stefan Umbreit




اسأل ChatGPT حول البحث

We investigate the dynamical decay of non-hierarchical accreting triple systems and its implications on the ejection model as Brown Dwarf formation scenario. A modified chain-regularization scheme is used to integrate the equations of motion, that also allows for mass changes over time as well as for momentum transfer from the accreted gas mass onto the bodies. We integrate an ensemble of triple systems within a certain volume with different accretion rates, assuming several prescriptions of how momentum is transferred onto the bodies. We follow their evolution until the systems have decayed. We analyze the end states and decay times of these systems and determine the fraction of Brown Dwarfs formed, their escape speeds as well as the semi-major axis distribution of the formed Brown Dwarf binaries. We find that the formation probability of Brown Dwarfs depends strongly on the assumed momentum transfer which is related to the motion of the gas. Due to ongoing accretion and consequent shrinkage of the systems, the median escape velocity is increased by a factor of 2 and the binary separations are decreased by a factor of 5 compared with non-accreting systems. Furthermore, the obtained semi-major axis distribution drops off sharply to either side of the median, which is also supported by observations. We conclude that accretion and momentum transfer of accreted gas during the dynamical decay of triple systems is able to produce the observed distribution of close binary Brown Dwarfs, making the ejection model a viable option as Brown Dwarf formation scenario.

قيم البحث

اقرأ أيضاً

181 - Emeline Bolmont 2017
The very recent discovery of planets orbiting very low mass stars sheds light on these exotic objects. Planetary systems around low-mass stars and brown dwarfs are very different from our solar system: the planets are expected to be much closer than Mercury, in a layout that could resemble the system of Jupiter and its moons. The recent discoveries point in that direction with, for example, the system of Kepler-42 and especially the system of TRAPPIST-1 which has seven planets in a configuration very close to the moons of Jupiter. Low-mass stars and brown dwarfs are thought to be very common in our neighborhood and are thought to host many planetary systems. The planets orbiting in the habitable zone of brown dwarfs (and very low-mass stars) represent one of the next challenges of the following decades: they are the only planets of the habitable zone whose atmosphere we will be able to probe (e.g. with the JWST).
Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as Brown Dwarfs or Giant Planets on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
Because the opacity of clouds in substellar mass object (SMO) atmospheres depends on the composition and distribution of particle sizes within the cloud, a credible cloud model is essential for accurately modeling SMO spectra and colors. We present a one--dimensional model of cloud particle formation and subsequent growth based on a consideration of basic cloud microphysics. We apply this microphysical cloud model to a set of synthetic brown dwarf atmospheres spanning a broad range of surface gravities and effective temperatures (g_surf = 1.78 * 10^3 -- 3 * 10^5 cm/s^2 and T_eff = 600 -- 1600 K) to obtain plausible particle sizes for several abundant species (Fe, Mg2SiO4, and Ca2Al2SiO7). At the base of the clouds, where the particles are largest, the particle sizes thus computed range from ~5 microns to over 300 microns in radius over the full range of atmospheric conditions considered. We show that average particle sizes decrease significantly with increasing brown dwarf surface gravity. We also find that brown dwarfs with higher effective temperatures have characteristically larger cloud particles than those with lower effective temperatures. We therefore conclude that it is unrealistic when modeling SMO spectra to apply a single particle size distribution to the entire class of objects.
69 - D. Apai 2005
The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micron-sized dust grains accompanied by dust settling toward the disk mid-plane. Here we present infrared spectra of disks around brown dwarfs an d brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.
We have obtained a series of high-resolution optical spectra for the brown dwarf 2MASSW J1207334-393254 (2M1207) using the ESO Very Large Telescope with the UVES spectrograph during two consecutive observing nights (time resolution of ~12 min) and th e Magellan Clay telescope with the MIKE spectrograph. Combined with previously published results, these data allow us to investigate changes in the emission line spectrum of 2M1207 on timescales of hours to years. Most of the emission line profiles of 2M1207 are broad, in particular that of Halpha, indicating that the dominant fraction of the emission must be attributed to disk accretion rather than to magnetic activity. From the Halpha 10% width we deduce a relatively stable accretion rate between 10^(-10.1...-9.8) Msun/yr for two nights of consecutive observations. Therefore, either the accretion stream is nearly homogeneous over (sub-)stellar longitude or the system is seen face-on. Small but significant variations are evident throughout our near-continuous observation, and they reach a maximum after ~8 h, roughly the timescale on which maximum variability is expected across the rotation cycle. Together with past measurements, we confirm that the accretion rate of 2M1207 varies by more than one order of magnitude on timescales of months to years. Such variable mass accretion yields a plausible explanation for the observed spread in the accretion rate vs. mass diagram. The magnetic field required to drive the funnel flow is on the order of a few hundred G. Despite the obvious presence of a magnetic field, no radio nor X-ray emission has been reported for 2M1207. Possibly strong accretion suppresses magnetic activity in brown dwarfs, similar to the findings for higher mass T Tauri stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا