ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for extended, obscured starbursts in submm galaxies

94   0   0.0 ( 0 )
 نشر من قبل Ian Smail
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare high-resolution optical and radio imaging of 12 luminous submm galaxies at z=2.2+/-0.2 observed with HST and the MERLIN and VLA at comparable spatial resolution, 0.3 (2kpc). The radio emission traces the likely far-infrared morphology of these dusty, luminous galaxies. In ~30% of the sample the radio appears unresolved, suggesting that the emission is compact: either an obscured AGN or nuclear starburst. However, in the majority, ~70% (8/12), the radio emission is resolved by MERLIN/VLA on scales of ~1 (10 kpc). For these galaxies the radio morphologies are broadly similar to their restframe UV emission seen by HST. We discuss the probable mechanisms for the extended emission and conclude that their luminous radio and submm emission arises from a large, spatially-extended starburst. The median SFRs are 1700Mo/yr occuring within a ~40kpc^2 region, giving a star formation density of 45Mo/yr/kpc^2. Such vigorous and extended starbursts appear to be uniquely associated with the submm population. A more detailed comparison of the distribution of UV and radio emission shows that the broad similarities on large scales are not carried through to smaller scales, where there is rarely a one-to-one correspondance. We interpret this as resulting from highly structured internal obscuration, suggesting that the vigorous activity is producing wind-blown channels through the obscuration in these galaxies. If correct this underlines the difficulty of using UV morphologies to understand structural properties of this population and also may explain the surprising frequency of Ly-alpha emission in their spectra. [Abridged]



قيم البحث

اقرأ أيضاً

The central structure in three of the brightest unlensed z=3-4 submillimeter galaxies are investigated through 0.015 - 0.05 (120 -- 360~pc) 860 micron continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distri bution in the central kpc in AzTEC1 and AzTEC8 are extremely complex, and they are composed of multiple ~200 pc clumps. AzTEC4 consists of two sources that are separated by ~1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ~300 - 3000 Msun/yr/kpc^2, suggesting regions with extreme star formation near the Eddington Limit. By comparing the flux obtained by ALMA and Submillimeter Array (SMA), we find that 68-90% of the emission is extended (> 1 kpc) in AzTEC 4 and 8. For AzTEC1, we identify at least 11 additional compact (~200 pc) clumps in the extended 3 - 4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at < 150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10 to 30% of the 860 micron continuum is concentrated in clumpy structures in the central kpc while the remaining flux is distributed over > 1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.
169 - P. M. Solomon 2001
The extraordinary starbursts found in ultraluminous IR galaxies occur in molecular gas concentrated in compact very massive clouds which we call Extreme Starbursts. They have one thousand times the mass but are only a few times larger than GMCs. High -mass star formation in sufficiently dense and massive structures does not disrupt further star formation; it is a runaway process. Star formation remains embedded in the molecular gas and there is little or virtually no optical-UV radiation. In the early universe extreme starbursts may be more frequent and they may be the mode of star formation in high redshift submillimeter sources.
Far-infrared Spitzer observations of elliptical galaxies are inconsistent with simple steady state models of dust creation in red giant stars and destruction by grain sputtering in the hot interstellar gas at T ~ 10^7 K. The flux at 24 microns correl ates with optical fluxes, suggesting that this relatively hot dust is largely circumstellar. But fluxes at 70 and 160 microns do not correlate with optical fluxes. Elliptical galaxies with similar L_B have luminosities at 70 and 160 microns (L_70 and L_160) that vary over a factor ~ 100, implying an additional source of dust unrelated to that produced by ongoing local stellar mass loss. Neither L_70/L_B nor L_160/L_B correlate with the stellar age or metallicity. Optical line fluxes from warm gas at T ~ 10^4 K correlate weakly with L_70 and L_160, suggesting that the dust may be responsible for cooling this gas. Many normal elliptical galaxies have emission at 70 microns that is extended to 5-10 kpc. Extended far-infrared emission with sputtering lifetimes of ~10^8 yrs is difficult to maintain by mergers with gas-rich galaxies. Instead, we propose that this cold dust is buoyantly transported from reservoirs of dust in the galactic cores which is supplied by mass loss from stars in the core. Intermittent energy outbursts from AGNs can drive the buoyant outflow.
69 - T.R. Greve 2005
In this paper we present results from an IRAM Plateau de Bure millimetre-wave Interferometer (PdBI) survey for CO emission towards radio-detected submillimetre galaxies (SMGs) with known optical and near-infrared spectroscopic redshifts. Five sources in the redshift range z~1-3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarise the properties of all 12 CO-detected SMGs, as well as 6 sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the SMG population as a whole. The median CO line luminosity of the SMGs is <L_CO> = (3.8 +- 2.0) x 10^10 K km/s pc^2. Using a CO-to-H_2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass <M(H_2)> = (3.0 +- 1.6) x 10^10 Msun within a ~2kpc radius, about four times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high-redshift radio galaxies and QSOs. The median CO fwhm linewidth is broad, <fwhm> = 780 +- 320 km/s, and the SMGs often have double peaked line profiles, indicative of either a merger or a disk. From their median gas reservoirs (~3 x 10^10 Msun) and star-formation rates (>700 Msun/yr) we estimate a lower limit on the typical gas-depletion time scale of >40Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs, and suggests that negative feedback processes may play an important role in prolonging the gas consumption time scale. We find a statistically-significant correlation between the far-infrared and CO luminosities of the SMGs which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. [ABRIDGED]
We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500um, taken with the Keck I Low Resolution Imaging Spectrometer (LRIS) and the Keck II DEep Imaging Multi-Object Sp ectrograph (DEIMOS). The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey (HerMES) peaks at z=0.85, with 731 sources at z<2 and a tail of sources out to z~5. We measure more significant disagreement between photometric and spectroscopic redshifts (<delta_z>/(1+z)>=0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. We estimate that the vast majority (72-83%) of z<2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1mm. We estimate the luminosity function and implied star-formation rate density contribution of HSGs at z<1.6 and find overall agreement with work based on 24um extrapolations of the LIRG, ULIRG and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z>>0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا