ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of X-ray pulsations from IGR J16320-4751 = AX J1631.9-4752

101   0   0.0 ( 0 )
 نشر من قبل Alexander Lutovinov
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a discovery of strong modulations of the X-ray flux detected from IGR J16320-4751 = AX J1631.9-4752 with a period of P~1300 sec. We reanalyzed the data of an XMM-Newton ToO performed soon after the discovery of the source by INTEGRAL and found the modulation at a period of P=1309+/-40 sec with a high significance. Modulations of the source flux with two possible periods of ~1300 and ~1500 sec were identified in the ASCA archival data. It is very likely that the modulation can be interpreted as X-ray pulsations, favouring a pulsar as the compact object in IGR/AX J16320-4752. Thus for the moment this source became the fourth source from a new class of highly absorbed binary systems for which the pulsations are observed.



قيم البحث

اقرأ أيضاً

193 - P. Reig 2014
We report on the discovery of X-ray pulsations in the Be/X-ray binary IGR J21343+4738 during an XMM-Newton observation. We obtained a barycentric corrected pulse period of 320.35+-0.06 seconds. The pulse profile displays a peak at low energy that fla ttens at high energy. The pulse fraction is 45+-3$% and independent of energy within the statistical uncertainties. The 0.2-12 keV spectrum is well fit by a two component model consisting of a blackbody with kT=0.11+-0.01 keV and a power law with photon index Gamma=1.02+-0.07. Both components are affected by photoelectric absorption with a equivalent hydrogen column density NH=(1.08+-0.15)x 10^{22} cm^{-2} The observed unabsorbed flux is 1.4x10^{-11} erg cm^{-2} s^{-1} in the 0.2-12 keV energy band. Despite the fact that the Be stars circumstellar disc has almost vanished, accretion continues to be the main source of high energy radiation. We argue that the observed X-ray luminosity (LX~10^{35} erg s^{-1}) may result from accretion via a low-velocity equatorial wind from the optical companion.
106 - P. Reig 2018
IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries. In Be/X-ray binaries, accretion onto the neutron star occurs via the transfer of material from the Be stars c ircumstellar disk. Thus, in the absence of the disk, no X-ray should be detected. The main goal of this work is to study the quiescent X-ray emission of IGR J06074+2205 during a disk-loss episode. We show that at the time of the XMM-Newton observation the decretion disk around the Be star had vanished. Still, accretion appears as the source of energy that powers the high-energy radiation in IGR J06074+2205. We report the discovery of X-ray pulsations with a pulse period of 373.2 s and a pulse fraction of ~50%. The $0.4-12$ keV spectrum is well described by an absorbed power law and blackbody components with the best fitting parameters: $N_{rm H}=(6.2pm0.5) times 10^{21}$ cm$^{-2}$, $kT_{rm bb}=1.16pm0.03$ keV, and $Gamma=1.5pm0.1$ The absorbed X-ray luminosity is $L_{rm X}=1.4 times 10^{34}$ erg s$^{-1}$ assuming a distance of 4.5 kpc. The detection of X-ray pulsations confirms the nature of IGR J06074+2205 as a Be/X-ray binary. We discuss various scenarios to explain the quiescent X-ray emission of this pulsar. We rule out cooling of the neutron star surface and magnetospheric emission and conclude that accretion is the most likely scenario. The origin of the accreted material remains an open question.
108 - Federico Garcia 2018
The INTEGRAL satellite has revealed a previously hidden population of absorbed high-mass X-ray binaries (HMXBs) hosting supergiant (SG) stars. Among them, IGR J16320-4751 is a classical system intrinsically obscured by its environment, with a column density of ~10$^{23}$ cm$^{-2}$, composed by a neutron star (NS, spin period ~1300 s), accreting matter from the stellar wind of an O8I star, with an orbital period of ~9 d. We analyzed all archival XMM-Newton and Swift/BAT observations, performing a detailed temporal and spectral analysis of its X-ray emission. XMM-Newton light curves show high-variability and flaring activity on several timescales. In one observation we detected two short and bright flares where the flux increased by a factor of ~10 for ~300 s, with similar behavior in the soft and hard X-ray bands. By inspecting the 4500-day light curves of the Swift/BAT data, we derived a refined period of 8.99$pm$0.01 days. The XMM-Newton spectra are characterized by a highly absorbed continuum and a Fe absorption edge at ~7 keV. We fitted the continuum with a thermally Comptonized model, and the emission lines with 3 narrow Gaussian functions using two absorption components, to take into account both the interstellar medium and the intrinsic absorption. We derived the column density at different orbital phases, showing its clear modulation. We also show that the flux of the Fe K$alpha$ line is correlated with the NH column, suggesting a link between absorbing and fluorescent matter that, together with the orbital modulation, points towards the SG wind as the main contributor to both continuum absorption and Fe K$alpha$ emission. Assuming a simple model for the SG wind we were able to explain the orbital modulation of the absorption column density, Fe K$alpha$ emission, and the high-energy Swift/BAT flux, allowing us to constrain the geometrical parameters of the binary system.
We report the detection of 376.05 Hz (2.66 ms) coherent X-ray pulsations in NICER observations of a transient outburst of the low-mass X-ray binary IGR J17494-3030 in 2020 October/November. The system is an accreting millisecond X-ray pulsar in a 75 minute ultracompact binary. The mass donor is most likely a $simeq 0.02 M_odot$ finite-entropy white dwarf composed of He or C/O. The fractional rms pulsed amplitude is 7.4%, and the soft (1-3 keV) X-ray pulse profile contains a significant second harmonic. The pulsed amplitude and pulse phase lag (relative to our mean timing model) are energy-dependent, each having a local maximum at 4 keV and 1.5 keV, respectively. We also recovered the X-ray pulsations in archival 2012 XMM-Newton observations, allowing us to measure a long-term pulsar spin-down rate of $dot u = -2.1(7)times10^{-14}$ Hz/s and to infer a pulsar surface dipole magnetic field strength of $simeq 10^9$ G. We show that the mass transfer in the binary is likely non-conservative, and we discuss various scenarios for mass loss from the system.
141 - L. C. C. Lin 2014
We report the X-ray pulsation of ~173.3 ms for the next Geminga, PSR J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded light curve has a sinusoidal structure which is different from the double-peaked gamma-ray pulse profile. We have also analysed the X-ray phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is thermal dominant. This suggests the X-ray pulsation mainly originates from the modulated hot spot on the stellar surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا