ﻻ يوجد ملخص باللغة العربية
We use the RASS-SDSS galaxy cluster sample to compare the quality of optical and X-ray luminosities as predictors of other cluster properties such as their masses, temperatures, and velocity dispersions. We use the SDSS spectroscopic data to estimate the velocity dispersions and the virial masses of a subsample of 69 clusters within r_{500} and r_{200}. The ASCA temperature of the intra-cluster medium, T_X, is retrieved from the literature for a subsample of 49 clusters. For this subsample we estimate the cluster masses also by using the mass-temperature relation. We show that the optical luminosity, L_{op}, correlates with the cluster mass much better than the X-ray luminosity, L_X. L_{op} can be used to estimate the cluster mass with an accuracy of 40% while L_X can predict the mass only with a 55% accuracy. We show that correcting $L_X$ for the effect of a cool core at the center of a cluster, lowers the scatter of the $L_X-M$ relation only by 3%. We find that the scatter observed in the L_{op}-L_X relation is determined by the scatter of the L_X-M relation. The mass-to-light ratio in the SDSS i band clearly increases with the cluster mass with a slope 0.2pm0.08. The optical and X-ray luminosities correlate in excellent way with both T_X and sigma_V with an orthogonal scatter of 20% in both relations. Moreover, L_{op} and L_X can predict with the same accuracy both variables. We conclude that the cluster optical luminosity is a key cluster parameter since it can give important information about fundamental cluster properties such as the mass, the velocity dispersion, and the temperature of the intra-cluster medium.
We present a lensing study of 42 galaxy clusters imaged in Sloan Digital Sky Survey (SDSS) commissioning data. Cluster candidates are selected optically from SDSS imaging data and confirmed for this study by matching to X-ray sources found independen
We present a sample of 383 X-ray selected galaxy groups and clusters with spectroscopic redshift measurements (up to z ~ 0.79) from the 2XMMi/SDSS Galaxy Cluster Survey. The X-ray cluster candidates were selected as serendipitously detected sources f
We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first su
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millen
This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e., massive) in Papers I and II of th