ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Properties of Faint X-rays Sources from NICMOS Imaging in the Chandra Deep Fields

122   0   0.0 ( 0 )
 نشر من قبل James W. Colbert
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the near-infrared properties of 42 X-ray detected sources from the Chandra Deep Fields North and South, the majority of which lie within the NICMOS Hubble Deep Field North and Ultra Deep Field. We detect all 42 Chandra sources with NICMOS, with 95% brighter than H = 24.5. We find that X-ray sources are most often in the brightest and most massive galaxies. Neither the X-ray fluxes nor hardness ratios of the sample show any correlation with near-infrared flux, color or morphology. This lack of correlation indicates there is little connection between the two emission mechanisms and is consistent with the near-infrared emission being dominated by starlight rather than a Seyfert non-stellar continuum. Near-infrared X-ray sources make up roughly half of all extremely red (J-H > 1.4) objects brighter than H > 24.5. These red X-ray sources have a range of hardness ratios similar to the rest of the sample, decreasing the likelihood of dust-obscured AGN activity as the sole explanation for their red color. Using a combination of spectroscopic and photometric redshifts, we find the red J-H objects are at high redshifts (z > 1.5), which we propose as the primary explanation for their extreme J-H color. Measurement of rest-wavelength absolute B magnitudes shows that X-ray sources are the brightest optical objects at all redshifts, which explains their dominance of the bright end of the red J-H population.



قيم البحث

اقرأ أيضاً

We present near-IR imaging of a sample of the faint, hard X-ray sources discovered in the 2001 Chandra ACIS-I survey towards the Galactic Centre (GC) (Wang et al. 2002). These ~800 discrete sources represent an important and previously undetected pop ulation within the Galaxy. From our VLT observations of 77 X-ray sources, we identify candidate K-band counterparts to 75% of the Chandra sources in our sample. The near-IR magnitudes and colours of the majority of candidate counterparts are consistent with highly reddened stars, indicating that most of the Chandra sources are likely to be accreting binaries at or near the GC.
A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS, Rengelink et al. 1997), has been imaged in the optical and near infrared, resulting in an identification fraction of 87%. The R-I and R-K colours of the faint optical counterparts are as expected for passively evolving elliptical galaxies, assuming that they follow the R band Hubble diagram as determined for radio-bright GPS galaxies. We have found evidence that the radio spectral properties of the GPS quasars are different from those of GPS galaxies: The observed distribution of radio spectral peak frequencies for GPS sources optically identified with bright stellar objects (presumably quasars) is shifted compared with GPS sources identified with faint or extended optical objects (presumably galaxies), in the sense that a GPS quasar is likely to have a higher peak frequency than a GPS galaxy. This means that the true peak frequency distribution is different for the GPS galaxies and quasars, because the sample selection effects are independent of optical identification. The correlation between peak frequency and redshift as has been suggested for bright sources has not been found in this sample; no correlation exists between R magnitude (and therefore redshift) and peak frequency for the GPS galaxies. We therefore believe that the claimed correlation is actually caused by the dependence of the peak frequency on optical host, because the GPS galaxies are in general at lower redshifts than the quasars. The difference in the peak frequency distributions of the GPS galaxies and quasars is further evidence against the hypothesis that they form a single class of object.
109 - V. Mainieri , P. Rosati , P. Tozzi 2005
We provide important new constraints on the nature and redshift distribution of optically faint (R>25) X-ray sources in the Chandra Deep Field South Survey. We show that we can derive accurate photometric redshifts for the spectroscopically unidentif ied sources thus maximizing the redshift completeness for the whole X-ray sample. Our new redshift distribution for the X-ray source population is in better agreement with that predicted by X-ray background synthesis models; however, we still find an overdensity of low redshift (z<1) sources. The optically faint sources are mainly X-ray absorbed AGN, as determined from direct X-ray spectral analysis and other diagnostics. Many of these optically faint sources have high (>10) X-ray-to-optical flux ratios. We also find that ~71% of them are well fitted with the SED of an early-type galaxy with <z_phot>~1.9 and the remaining 29% with irregular or starburst galaxies mainly at z_phot>3. We estimate that 23% of the optically faint sources are X-ray absorbed QSOs. The overall population of X-ray absorbed QSOs contributes a ~15% fraction of the [2-10] keV X-ray Background (XRB) whereas current XRB synthesis models predict a ~38% contribution.
703 - D. Batcheldor 2008
The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, are seen to dominate the accuracy of p and theta. However, the updated coefficients do allow imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This work enables a new caliber of science with HST.
Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6um when using sensitive Spitzer observations with uJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4GHz flux density to 3.6um flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا