ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-arcsecond resolution observations of the hot corino of the solar type protostar IRAS 16293-2422

129   0   0.0 ( 0 )
 نشر من قبل Sandrine Bottinelli
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex organic molecules have previously been discovered in solar type protostars, raising the questions of where and how they form in the envelope. Possible formation mechanisms include grain mantle evaporation, interaction of the outflow with its surroundings or the impact of UV/X-rays inside the cavities. In this Letter we present the first interferometric observations of two complex molecules, CH3CN and HCOOCH3, towards the solar type protostar IRAS16293-2422. The images show that the emission originates from two compact regions centered on the two components of the binary system. We discuss how these results favor the grain mantle evaporation scenario and we investigate the implications of these observations for the chemical composition and physical and dynamical state of the two components.

قيم البحث

اقرأ أيضاً

67 - S. Takakuwa 2007
(Abridged) With the SMA we have made high angular-resolution (~1 = 160 AU) observations of the protobinary system IRAS 16293-2422 in the J = 4-3 lines of HCN and HC^15N, and in the continuum at 354.5 GHz. The HCN (4-3) line was also observed using th e JCMT to supply missing short spacing information. Submillimeter continuum emission is detected from the individual binary components with a separation of ~5. The HC^15N (4-3) emission has revealed a compact (~500 AU) flattened structure (P.A. = -16 degree) associated with Source A, and shows a velocity gradient along the projected minor axis, which can be interpreted as an infalling gas motion. Our HCN image including the short-spacing information shows an extended (~3000 AU) circumbinary envelope as well as the compact structure associated with Source A. A toy model consisting of a flattened structure with radial infall towards a 1 Msun central star reproduces the HCN/HC^15N position-velocity diagram along the minor axis of the HC^15N emission. In the extended envelope there is also a North-East (Blue) to South-West (Red) velocity gradient across the binary alignment, which is likely to reflect gas motion in the swept-up dense gas associated with the molecular outflow from Source A. At Source B, there is only a weak compact structure with much narrower line widths (~2 km/s) seen in the optically-thin HC^15N emission than that at Source A (>10 km/s), and there is no clearly defined bipolar molecular outflow associated with Source B. These results imply the different evolutionary stages between Source A and B in the common circumbinary envelope.
The protonated form of CO2, HOCO+, is assumed to be an indirect tracer of CO2 in the millimeter/submillimeter regime since CO2 lacks a permanent dipole moment. Here, we report the detection of two rotational emission lines (4 0,4-3 0,3) and (5 0,5-4 0,4) of HOCO+ in IRAS 16293-2422. For our observations, we have used EMIR heterodyne 3 mm receiver of the IRAM 30m telescope. The observed abundance of HOCO+ is compared with the simulations using the 3-phase NAUTILUS chemical model. Implications of the measured abundances of HOCO+ to study the chemistry of CO2 ices using JWST-MIRI and NIRSpec are discussed as well.
Isocyanic acid (HNCO), the most stable of the simplest molecules containing the four main elements essential for organic chemistry, has been observed in several astrophysical environments such as molecular clouds, star-forming regions, external galax ies and comets. In this work, we model HNCO spectral line profiles toward the low-mass solar type protostar IRAS 16293$-2$422 observed with the ALMA interferometer, the IRAM, JCMT and APEX single-dish radio telescopes, and the HIFI instrument on board the Herschel Space Observatory. In star-forming environments, the HNCO emission is not always in Local Thermodynamical Equilibrium (LTE). A non-LTE radiative transfer approach is necessary to properly interpret the line profiles, and accurate collisional rate coefficients are needed. Here, we used the RADEX package with a completely new set of collisional quenching rates between HNCO and both ortho-H$_2$ and para-H$_2$ obtained from quantum chemical calculations yielding a novel potential energy surface in the rigid rotor approximation. We find that the lines profiles toward IRAS 16293$-$2422 are very well reproduced if we assume that the HNCO emission arises from a compact, dense and hot physical component associated with the hot corino, a warm component associated with the internal part of the protostellar envelope, and a cold and more extended component associated with the outer envelope. The derived HNCO abundances from our model agree well with those computed with the Nautilus chemical code.
The Class 0 protostar IRAS 16293$-$2422 Source A is known to be a binary system (A1 and A2) or even a multiple system, which processes a complex outflow structure. We have observed this source in the C$^{34}$S, SO, and OCS lines at 3.1 mm with the At acama Large Millimeter/submillimeter Array (ALMA). A substructure of this source is traced by our high angular-resolution observation (0farcs12; 20 au) of the continuum emission. The northwest-southeast (NW-SE) outflow on a 2arcsec scale is detected in the SO ($J_N$ = $2_2$--$1_1$) line. Based on the morphology of the SO distribution, this bipolar outflow structure seems to originate from the protostar A1 and its circumstellar disk, or the circummultiple structure of Source A. The rotation motion of the NW-SE outflow is detected in the SO and OCS emissions. We evaluate the specific angular momentum of the outflowing gas to be $(8.6 - 14.3) times 10^{-4}$ km s$^{-1}$ pc. If the driving source of this outflow is the protostar A1 and its circumstellar disk, it can be a potential mechanism to extract the specific angular momentum of the disk structure. These results can be a hint for the outflow launching mechanism in this source. Furthermore, they provide us with an important clue to resolve the complicated structure of IRAS 16293$-$2422 Source A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا