ترغب بنشر مسار تعليمي؟ اضغط هنا

A new measurement of the altitude dependence of the atmospheric muon intensity

388   0   0.0 ( 0 )
 نشر من قبل Stephane Coutu
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new measurement of atmospheric muons made during an ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+/mu- as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c is presented. The differential mu- intensities in the 0.3-50 GeV/c range and for atmospheric depths between 4-960 g/cm^2 are also presented. We compare these results with other measurements and model predictions. We find that our charge ratio is ~1.1 for all atmospheric depths and is consistent, within errors, with other measurements and the model predictions. We find that our measured mu- intensities are also consistent with other measurements, and with the model predictions, except at shallow atmospheric depths.



قيم البحث

اقرأ أيضاً

237 - T. Sanuki , M. Fujikawa , K. Abe 2002
We report new measurements of the atmospheric muons at mountain altitude. The measurement was carried out with the BESS detector at the top of Mt. Norikura, Japan. The altitude is 2,770 m above sea level. Comparing our results and predictions given b y some interaction models, a further appropriate model has been investigated. These studies would improve accuracy of atmospheric neutrino calculations.
The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.
As a consequence of greenhouse forcing, all state of the art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200 to 400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the vertical surface energy. A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.
119 - S. Aiello , F. Ameli , I. Amore 2009
The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا