ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and construction of the IMACS-IFU, a 2000-element integral field unit

46   0   0.0 ( 0 )
 نشر من قبل Juergen Schmoll
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The IMACS-IFU is an Integral Field Unit built for the IMACS spectrograph at the Magellan-I-Telescope at Las Campanas Observatory. It consists of two rectangular fields of 5 by 7 arcseconds, separated by roughly one arcminute. With a total number of 2000 spatial elements it is the second largest fiber-lenslet based IFU worldwide, working in a wavelength range between 400 and 900 nm. Due to the equally sized fields classical background subtraction, beam switching and shuffling are possible observation techniques. One particular design challenge was the single, half a metre long curved slit in combination with a non telecentric output. Besides the construction some preliminary results are described.

قيم البحث

اقرأ أيضاً

The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 arc second pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we briefly describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution). The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with further ESA member state contributions from Belgium, Finland, Germany, Poland, Spain, Switzerland and two international partners from the United States and Japan.
We are building an image slicer integral field unit (IFU) to go on the IMACS wide-field imaging spectrograph on the Magellan Baade Telescope at Las Campanas Observatory, the Reformatting Optically-Sensitive IMACS Enhancement IFU, or ROSIE IFU. The 50 .4 x 53.5 field of view will be pre-sliced into four 12.6 x 53.5 subfields, and then each subfield will be divided into 21 0.6 x 53.5 slices. The four main image slicers will produce four pseudo-slits spaced six arcminutes apart across the IMACS f/2 camera field of view, providing a wavelength coverage of 1800 Angstroms at a spectral resolution of 2000. Optics are in-hand, the first image slicer is being aluminized, mounts are being designed and fabricated, and software is being written. This IFU will enable the efficient mapping of extended objects such as nebulae, galaxies, or outflows, making it a powerful addition to IMACS.
The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the L2 and L3 missions of its science program. The Athena+ science payload consists of a large aperture high angular resolution X-ray optics and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2.5 eV spectral resolution, with ~5 pixels, over a field of view of 5 arc minutes in diameter. In this paper, we briefly describe the Athena+ mission concept and the X-IFU performance requirements. We then present the X-IFU detector and readout electronics principles, the current design of the focal plane assembly, the cooling chain and review the global architecture design. Finally, we describe the current performance estimates, in terms of effective area, particle background rejection, count rate capability and velocity measurements. Finally, we emphasize on the latest technology developments concerning TES array fabrication, spectral resolution and readout performance achieved to show that significant progresses are being accomplished towards the demanding X-IFU requirements.
149 - Didier Barret 2018
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5 equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ~5 arcsecond pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at about 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 microns. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of about 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (>50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018.
The upcoming Wide-Field Upgrade (WFU) has ushered in a new era of instrumentation for the Hobby-Eberly Telescope (HET). Here, we present the design, construction progress, and lab tests completed to date of the blue-optimized second generation Low Re solution Spectrograph (LRS2-B). LRS2-B is a dual-channel, fiber fed instrument that is based on the design of the Visible Integral Field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy eXperiment (HETDEX). LRS2-B utilizes a microlens-coupled integral field unit (IFU) that covers a 7x12 area on the sky having unity fill-factor with ~300 spatial elements that subsample the median HET image quality. The fiber feed assembly includes an optimized dichroic beam splitter that allows LRS2-B to simultaneously observe 370 nm to 470 nm and 460 nm to 700 nm at fixed resolving powers of R approx 1900 and 1200, respectively. We discuss the departures from the nominal VIRUS design, which includes the IFU, fiber feed, camera correcting optics, and volume phase holographic grisms. Additionally, the motivation for the selection of the wavelength coverage and spectral resolution of the two channels is briefly discussed. One such motivation is the follow-up study of spectrally and (or) spatially resolved Lyman-alpha emission from z ~ 2.5 star-forming galaxies in the HETDEX survey. LRS2-B is planned to be a commissioning instrument for the HET WFU and should be on-sky during quarter 4 of 2013. Finally, we mention the current state of LRS2-R, the red optimized sister instrument of LRS2-B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا