ترغب بنشر مسار تعليمي؟ اضغط هنا

GEMS: which galaxies dominate the z~0.7 ultraviolet luminosity density?

45   0   0.0 ( 0 )
 نشر من قبل Christian Wolf
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine high-resolution images from GEMS with redshifts and spectral energy distributions from COMBO-17 to explore the morphological types of galaxies that dominate the z~0.7 UV luminosity density. We analysed rest-frame 280 nm and V-band luminosities of 1483 galaxies with 0.65<z< 0.75, combining these with visual morphological classifications from F850LP images (approximately rest-frame V-band) taken with HST/ACS on the Extended Chandra Deep Field South. We derive UV luminosity functions and j_280 luminosity densities for spheroid-dominated galaxies, spiral galaxies, Magellanic irregulars, and clearly-interacting galaxies with morphologies suggestive of ongoing major mergers. We check the reliability of GEMS morphologies against the deeper GOODS images and quantify an incompleteness of the GEMS merger identification at the faint end. We derive the fractions of the global UV luminosity density j_280 originating from the galaxy types, and find that spiral galaxies and Magellanic irregulars dominate with about 40% each. Interacting and merging galaxies account for roughly 20% of j_280, while the contribution of early types is negligible. These results imply that the strong decline in the UV luminosity density of the Universe observed from z~1 until today is dominated by the decreasing UV luminosities of normal spiral galaxies, accompanied by the migration of UV-luminous star formation in irregular galaxies to systems of progressively lower mass and luminosity. (abridged)



قيم البحث

اقرأ أيضاً

We study the contribution of galaxies with different properties to the global densities of star formation rate (SFR), atomic (HI) and molecular hydrogen (H2) as a function of redshift. We use the GALFORM model of galaxy formation, which is set in the LCDM framework. This model includes a self-consistent calculation of the SFR, which depends on the H2 content of galaxies. The predicted SFR density and how much of this is contributed by galaxies with different stellar masses and infrared luminosities are in agreement with observations. The model predicts a modest evolution of the HI density at z<3, which is also in agreement with the observations. The HI density is predicted to be always dominated by galaxies with SFR<1Msun/yr. This contrasts with the H2 density, which is predicted to be dominated by galaxies with SFR>10Msun/yr. Current high-redshift galaxy surveys are limited to detect carbon monoxide in galaxies with SFR>30Msun/yr, which in our model make up, at most, 20% of the H2 in the universe. In terms of stellar mass, the predicted H2 density is dominated by massive galaxies, Mstellar>10^10Msun, while the HI density is dominated by low mass galaxies, Mstellar<10^9Msun. In the context of upcoming neutral gas surveys, we suggest that the faint nature of the galaxies dominating the HI content of the Universe will hamper the identification of optical counterparts, while for H2, we expect follow up observations of molecular emission lines of already existing galaxy catalogues to be able to uncover the H2 density of the Universe.
89 - B. Liebchen , H. Lowen 2018
Despite a mounting evidence that the same gradients which active colloids use for swimming, induce important cross-interactions (phoretic interaction), they are still ignored in most many-body descriptions, perhaps to avoid complexity and a zoo of un known parameters. Here we derive a simple model, which reduces phoretic far-field interactions to a pair-interaction whose strength is mainly controlled by one genuine parameter (swimming speed). The model suggests that phoretic interactions are generically important for autophoretic colloids (unless effective screening of the phoretic fields is strong) and should dominate over hydrodynamic interactions for the typical case of half-coating and moderately nonuniform surface mobilities. Unlike standard minimal models, but in accordance with canonical experiments, our model generically predicts dynamic clustering in active colloids at low density. This suggests that dynamic clustering can emerge from the interplay of screened phoretic attractions and active diffusion.
The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus (AGN) into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be sum marized by the dimensionless parameter $eta=dot{M_outflow}/dot{M_accretion}= (2 epsilon_w c^2)/v_w^2$ where ($epslion_w equiv dot{E}_w/(dot{M_accretion} c^2)$) is the efficiency by which accreted matter is turned into wind energy in the disc surrounding the central SMBH. The outflowing mass and omentum are proportional to $eta$, and many prior treatments have essentially assumed that $eta=0$. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to an hundred fold increase in the mass of the SMBH to over $10^{10} Msun$. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies which lead to the most observationally acceptable results are relatively low with $epsilon_w lesssim 10^{-4}$.
We identified the z~2 Lyman break galaxies using deep HST ultraviolet (F275W/F336W) imaging of Abell 1689. Because of the imaging depth and the large magnification provided by the cluster, we detect galaxies 100x fainter (-19.5< M_1500 <-13) than pre vious surveys at this redshift. We are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be alpha = -1.74 +/-0.08, consistent with the values obtained for 2.5 < z < 6. There is no turnover in the luminosity function down to MUV = -13. The trend of increasingly redder UV spectral slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of < E(B - V) >= 0.15. We assume the stars in these galaxies are metal poor (0.2Z_sun) compared to their brighter counterparts (Z_sun), resulting in bluer assumed intrinsic UV slopes and larger derived dust extinction. The total UV luminosity density at z ~ 2 is 4.31x10^26 erg/s/Hz/Mpc^3, more than 70% of which is emitted by galaxies in the luminosity range of our sample. We determine the star formation rate density at z ~ 2 (assuming constant dust extinction correction of 4.2 over all luminosities and a Kroupa IMF) of 0.148 M/yr/Mpc^3, significantly higher than previous determinations because of the additional population of fainter galaxies and the larger dust correction factors.[abridged]
Previous optical studies found an unexpected deficit of bars at z > 0.7. To investigate the effects of bandshifting, we have studied the fraction of barred spirals in the NICMOS Deep Field North. At z > 0.7 we find at least four barred spirals, doubl ing the number previously detected. The number of barred galaxies is small because these (and previous) data lack adequate spatial resolution. A typical 5 kpc bar at z > 0.7 is only marginally detectable for WFPC2 at 0.8microns; the NICMOS data have even lower resolution and can only find the largest bars. The average size of the four bars seen at z > 0.7 is 12 kpc. The fraction of such large bars (4/95) is higher than that seen in nearby spirals (1/44); all known selection effects suggest that the observed fraction is a lower limit. However, important caveats such as small numbers and difficulties in defining comparable samples at high and low redshifts should be noted. We conclude that there is no significant evidence for a decrease in the fraction of barred spirals beyond z ~ 0.7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا