ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass-producing spectra: The SDSS spectrographic system

45   0   0.0 ( 0 )
 نشر من قبل Peter R. Newman
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peter R. Newman




اسأل ChatGPT حول البحث

The Sloan Digital Sky Survey is the largest redshift survey conducted to date, and the principal survey observations have all been conducted on the dedicated SDSS 2.5m and 0.5m telescopes at Apache Point Observatory. While the whole survey has many unique features, this article concentrates on a description of the systems surrounding the dual fibre-input spectrographs that obtain all the survey spectra and that are capable of recording 5,760 individual spectra per night on an industrial, consistent, mass-production basis. It is hoped that the successes and lessons learned will prove instructive for future large spectrographic surveys.

قيم البحث

اقرأ أيضاً

Numerical simulations of star formation have found that a power-law mass function can develop at high masses. In a previous paper, we employed isothermal simulations which created large numbers of sinks over a large range in masses to show that the p ower law exponent of the mass function, $dN/dlog M propto M^{Gamma}$, asymptotically and accurately approaches $Gamma = -1.$ Simple analytic models show that such a power law can develop if the mass accretion rate $dot{M} propto M^2$, as in Bondi-Hoyle accretion; however, the sink mass accretion rates in the simulations show significant departures from this relation. In this paper we show that the expected accretion rate dependence is more closely realized provided the gravitating mass is taken to be the sum of the sink mass and the mass in the near environment. This reconciles the observed mass functions with the accretion rate dependencies, and demonstrates that power-law upper mass functions are essentially the result of gravitational focusing, a mechanism present in, for example, the competitive accretion model.
The inversion of a gravitational lens system is, as is well known, plagued by the so-called mass-sheet degeneracy: one can always rescale the density distribution of the lens and add a constant-density mass-sheet such that the, also properly rescaled , source plane is projected onto the same observed images. For strong lensing systems, it is often claimed that this degeneracy is broken as soon as two or more sources at different redshifts are available. This is definitely true in the strict sense that it is then impossible to add a constant-density mass-sheet to the rescaled density of the lens without affecting the resulting images. However, often one can easily construct a more general mass distribution -- instead of a constant-density sheet of mass -- which gives rise to the same effect: a uniform scaling of the sources involved without affecting the observed images. We show that this can be achieved by adding one or more circularly symmetric mass distributions, each with its own center of symmetry, to the rescaled mass distribution of the original lens. As it uses circularly symmetric distributions, this procedure can lead to the introduction of ring shaped features in the mass distribution of the lens. In this paper, we show explicitly how degenerate
Very recently, the LHCb Collaboration reported the observation of several enhancements in the invariant mass spectrum of a $J/psi$ pair between 6.2 and 7.4 GeV. In this work, we propose the dynamical mechanism to mimic the experimental data of a di-$ J/psi$ mass spectrum given by LHCb, which is based on the reactions, where all the possible combinations of a double charmonium directly produced by a proton-proton collision are transferred into a final state $J/psi J/psi$. We find that the LHCb experimental data can be well reproduced. We further extend our framework to study a di-$Upsilon(1S)$ system, and give the line shape of a differential cross section of a partner process in a $bbar{b}$ system on the invariant mass of $Upsilon(1S)Upsilon(1S)$, which shows that there should exist possible enhancements near $m_{Upsilon(1S)Upsilon(1S)}=$19.0, 19.3, 19.7 GeV in the $Upsilon(1S)$-pair invariant mass spectrum. These predictions can be tested in LHCb and CMS, which can be as a potential research issue in near future.
A fundamental puzzle of our solar systems formation is understanding why the terrestrial bodies including the planets,comets,and asteroids are depleted in $^{16}$O compared to the Sun. The most favored mechanism,the selective photodissociation of CO gas to produce $^{16}$O depleted water,requires finely tuned mixing timescales to transport $^{16}$O depleted water from the cold outer solar system to exchange isotopically with dust grains to produce the $^{16}$O depleted planetary bodies observed today. Here we show that energetic particle irradiation of SiO$_2$ (and Al$_2$O$_3$) makes them susceptible to anomalous isotope exchange with H$_2$O ice at temperatures as low as 10 K. The observed magnitude of the anomalous isotope exchange (D$^{17}$O) is sufficient to generate the $^{16}$O depletion characteristic of the terrestrial bodies in the solar system. We calculated the cosmic-ray exposure times needed to produce the observed $^{16}$O depletions in silicate (SiO2) dust in the interstellar medium and early solar system and find that radiation damage induced oxygen isotope exchange could have rapidly (~10-100 yrs) depleted dust grains of $^{16}$O during the Suns T-Tauri phase. Our model explains whythe oldest and most refractory minerals found in the solar system, the anhydrous Calcium with Aluminum Inclusions (CAIs),are generally $^{16}$O enriched compared to chondrules and the bulk terrestrial solids and provides a mechanism for producing $^{16}$O depleted grains very early in the solar systems history. Our findings have broad implications for the distribution of oxygen isotopes in the solar system, the interstellar medium, the formation of the planets and its building blocks as well as the nature of mass-independent isotope effects.
The Magellanic clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust.W e have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects (YSOs), 4 post-AGB objects, 22 Red Supergiants (RSGs), 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10Wolf-Rayet (WR) stars, 3 Hii regions, 3 R Coronae Borealis (R CrB) stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا