ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated X-ray and Optical Variability in V404 Cyg in Quiescence

81   0   0.0 ( 0 )
 نشر من قبل Robert I. Hynes
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report simultaneous X-ray and optical observations of V404 Cyg in quiescence. The X-ray flux varied dramatically by a factor of >20 during a 60ks observation. X-ray variations were well correlated with those in Halpha, although the latter include an approximately constant component as well. Correlations can also be seen with the optical continuum, although these are less clear. We see no large lag between X-ray and optical line variations; this implies they are causally connected on short timescales. As in previous observations, Halpha flares exhibit a double-peaked profile suggesting emission distributed across the accretion disk. The peak separation is consistent with material extending outwards to at least the circularization radius. The prompt response in the entire Halpha line confirms that the variability is powered by X-ray (and/or EUV) irradiation.


قيم البحث

اقرأ أيضاً

56 - C. Zurita 2004
We present the results of optical and infrared photometry of the quiescent X-ray transient V404 Cyg during the period 1992-2003. The ellipsoidal modulations extracted from the most complete databases (years 1992, 1998 and 2001) show unequal maxima an d minima with relative strength varying from year to year although their peak to peak amplitudes remain roughly constant at 0.24+-0.01 magnitudes. Fast optical variations superimposed on the secondary stars double-humped ellipsoidal modulation were detected every year with a mean amplitude of ~0.07 mags. We have not found significant changes in the activity during this decade which indicates that this variability is probably not connected to the 1989 outburst. We have found periodicities in the 1998 and 2001 data near the 6 hr quasi-periodicity observed in 1992, although we interpret it as consequence of the appearance of a flare event almost every night. Significant variability is also present in the I and near infrared (J and K_short) bands and this decreases slightly or remains approximately constant at longer wavelengths. A cross correlation analysis shows that both the R and I emission are simultaneous down to 40 s.
421 - R. I. Hynes 2001
We present a spectrophotometric study of short-term optical variability in the quiescent black hole X-ray transient V404 Cyg. This includes two nights of high time-resolution Halpha spectroscopy with which we resolve much of the time-variability, and a further six nights of archival spectroscopy with lower time-resolution but higher spectral-resolution. We find significant variability in most of the data considered, with both the Halpha line and the continuum often varying in a correlated way. This includes both dramatic flares lasting a few hours in which the line flux nearly doubles and lower-level flickering. The strongest flares involve development of asymmetry in the line profile, with the red wing usually strongest independent of orbital phase. It is unclear why this is the case, but we discuss several possible explanations. We consider the energetics of the flares and compare with plausible models including chromospheric activity on the companion star, local magnetic reconnection events within the disc and a varying irradiation from close to the black hole. Based on the line profile changes during the flares, we conclude that the most likely origin for the variability is variable photoionisation by the central source, although local flares within the disc cannot be ruled out.
We have obtained high time resolution (seconds) photometry of LMC X-2 in December 1997, simultaneously with the Rossi X-ray Timing Explorer (RXTE), in order to search for correlated X-ray and optical variability on timescales from seconds to hours. W e find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20s. The timescale for the lag can be reconciled with disc reprocessing, driven by the higher energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations durin g the brightest epoch of the outburst, along with complementary NuSTAR, AAVSO, and VSNET data, to examine the timing relationship between the simultaneous optical and X-ray light curves, in order to understand the emission mechanisms and physical locations. We have identified all optical flares which have simultaneous X-ray observations, and performed cross-correlation analysis to estimate the time delays between the optical and soft and hard X-ray emission. We have also compared the evolution of the optical and X-ray emission with the hardness-ratios. We have identified several types of behaviour during the outburst. On many occasions, the optical flares occur simultaneously with X-ray flares, but at other times positive and negative time delays between the optical and X-ray emission are measured. We conclude that the observed optical variability is driven by different physical mechanisms, including reprocessing of X-rays in the accretion disc and/or the companion star, interaction of the jet ejections with surrounding material or with previously ejected blobs, and synchrotron emission from the jet.
On 2015 June 15 the Swift space observatory discovered that the Galactic black hole candidate V404 Cyg was undergoing another active X-ray phase, after 25 years of inactivity (Barthelmy et al. 2015). Twelve telescopes of the MASTER Global Robotic Net located at six sites across four continents were the first ground based observatories to start optical monitoring of the microquasar after its gamma-ray wakeup at 18h 34m 09s U.T. on 2015 June 15 (Lipunov et al. 2015). In this paper we report, for the first time, the discovery of variable optical linear polarization, changing by 4-6% over a timescale of approximately 1 h, on two different epochs. We can conclude that the additional variable polarization arisies from the relativistic jet generated by the black hole in V404Cyg. The polarization variability correlates with optical brightness changes, increasing when the flux decreases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا