ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Spectroscopy of McNeils Nebula Object

134   0   0.0 ( 0 )
 نشر من قبل William Vacca
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. D. Vacca -




اسأل ChatGPT حول البحث

We present 0.8-5.2 micron spectroscopy of the compact source at the base of a variable nebula (McNeils Nebula Object) in the Lynds 1630 dark cloud that went into outburst in late 2003. The spectrum of this object reveals an extremely red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice absorption feature, and a solid state CO absorption feature at 4.7 microns. In addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen lines exhibit P Cygni profiles, as do two lines of He I, although the emission features are very weak in the latter. The Brackett lines, however, are seen to be purely in emission. The P Cygni profiles clearly indicate that mass outflow is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not yield consistent estimates of the reddening, nor do they agree with the extinction estimated from the ice feature (A_V ~ 11). We propose that these lines are optically thick and are produced in a dense, ionized wind. The near-infrared spectrum does not appear similar to any known FUor or EXor object. However, all evidence suggests that McNeils Nebula Object is a heavily-embedded low-mass Class I protostar, surrounded by a disk, whose brightening is due to a recent accretion event.



قيم البحث

اقرأ أيضاً

110 - D.K. Ojha , S.K. Ghosh , A. Tej 2006
We present a detailed study of the post-outburst phase of McNeils nebula (V1647 Ori) using optical B,V,R,I and NIR J,H,K photometric and low resolution optical spectroscopic observations. The observations were carried out with the HFOSC, NIRCAM, TIRC AM and NICMOS cameras on the 2m HCT and 1.2m PRL telescopes during the period 2004 Feb-2005 Dec. The optical/NIR observations show a general decline in brightness of the exciting source of McNeils nebula (V1647 Ori). Our recent optical images show that V1647 Ori has faded by more than 3 mags since Feb 2004. The optical/NIR photometric data also show a significant variation in the mags (Delta V = 0.78 mag, Delta R = 0.44 mag, Delta I = 0.21 mag, Delta J = 0.24 mag and Delta H = 0.20 mag) of V1647 Ori within a period of one month, which is possibly undergoing a phase similar to eruptive variables, like EXors or FUors. The optical spectra show a few features such as strong Halpha emission with blue-shifted absorption and the CaII IR triplet (8498A, 8542A and 8662A) in emission. As compared to the period just after outburst, there is a decrease in the depth and extent of the blue-shifted absorption component, indicating a weakening in the powerful stellar wind. The presence of the CaII IR triplet in emission confirms that V1647 Ori is a PMS star. The long-term, post-outburst photometric observations of V1647 Ori suggest an EXor, rather than an FUor event. An optical/IR comparison of the region surrounding McNeils nebula shows that the optical nebula is more widely and predominantly extended to the north, whereas the IR nebula is relatively confined (dia ~ 60 arcsec), but definitely extended, to the south, too.
We have carried out near-infrared (NIR) imaging observations of the Carina Nebula for an area of ~400 sq. arcmin. including the star clusters Trumpler 14 (Tr 14) and Trumpler 16 (Tr 16). With 10 sigma limiting magnitudes of J ~ 18.5, H ~ 17.5 and K_s ~ 16.5, we identified 544 Class II and 11 Class I young star candidates. We find some 40 previously unknown very red sources with H-K_s > 2, most of which remain undetected at the J band. The red NIR sources are found to be concentrated to the south-east of Tr 16, along the `V shaped dust lane, where the next generation of stars seems to be forming. In addition, we find indications of ongoing star formation near the three MSX point sources, G287.51-0.49, G287.47-0.54, and G287.63-0.72. A handful of red NIR sources are seen to populate around each of these MSX sources. Apart from this, we identified two hard Chandra X-ray sources near G287.47-0.54, one of which does not have an NIR counterpart and may be associated with a Class I/Class 0 object. The majority of the Class II candidates, on the other hand, are seen to be distributed in the directions of the clusters, demarcating different evolutionary stages in this massive star-forming region. A comparison of the color-magnitude diagrams of the clusters with pre-main sequence model tracks shows that the stellar population of these clusters is very young (< 3 Myr). The K_s band luminosity function (KLF) of Tr 14 shows structure at the faint end, including a sharp peak due to the onset of deuterium burning, implying an age of 1-2 Myr for the cluster. The KLF of Tr 16, in contrast, is found to rise smoothly until it turns over. The slopes of the mass functions derived for the clusters are found to be in agreement with the canonical value of the field star initial mass function derived by Salpeter.
We carried out deep and wide (about 8 x 8) JHKs imaging polarimetry in the southern region of the Eagle Nebula (M16). The polarization intensity map reveals that two YSOs with near-IR reflection nebulae are located at the tips of two famous molecular pillars (Pillars 1 and 2) facing toward the exciting stars of M16. The centrosymmetric polarization pattern are consistent with those around class I objects having circumstellar envelopes, confirming that star formation is now taking place at the two tips of the pillars under the influence of UV radiation from the exciting stars. Polarization measurements of point sources show that magnetic fields are aligned along some of the pillars but in a direction that is quite different to the global structure in M16.
Wide-field (~8 x 8) and deep near-infrared (JHKs bands) polarization images of the Orion nebulae (IRNe) around young stellar objects (YSOs), both massive and low-mass. We found the IRNe around both IRc2 and BN to be very extensive, suggesting that th ere might be two extended (>0.7 pc) bipolar/monopolar IRNe in these sources. We discovered at least 13 smaller-scale (~0.01-0.1 pc) IRNe around less-massive YSOs including the famous source theta^2 Ori C. We also suggest the presence of many unresolved (<690 AU) systems around low-mass YSOs and young brown dwarfs showing possible intrinsic polarizations. Wide-field infrared polarimetry is thus demonstrated to be a powerful technique in revealing IRNe and hence potential disk/outflow systems among high-mass to substellar YSOs.
115 - M. Teodoro 2008
This work presents the first integral field spectroscopy of the Homunculus nebula around Eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0x10^{16} cm, respectively. We also mapped the blue-shifted component of He I 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of Smith (2005) and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small HII region. Therefore, we used the optically-thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in Eta Car. In the context of a binary system, and assuming that the ionising flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament but they are obviously spatially separated, while the blue-shifted component of He I 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا