ﻻ يوجد ملخص باللغة العربية
The narrow-line quasar PHL 1092 was observed by XMM-Newton at two epochs separated by nearly thirty months. Timing analyses confirm the extreme variability observed during previous X-ray missions. A measurement of the radiative efficiency is in excess of what is expected from a Schwarzschild black hole. In addition to the rapid X-ray variability, the short UV light curves (< 4 hours) obtained with the Optical Monitor may also show fluctuations, albeit at much lower amplitude than the X-rays. In general, the extreme variability is impressive considering that the broad-band (0.4-10 keV rest-frame) luminosity of the source is ~10^45 erg/s. During at least one of the observations, the X-ray and UV light curves show common trends, although given the short duration of the OM observations, and low significance of the UV light curves it is difficult to comment on the importance of this possible correlation. Interestingly, the high-energy photons (> 2 keV) do not appear highly variable. The X-ray spectrum resembles that of many narrow-line Seyfert 1 type galaxies: an intense soft-excess modelled with a multi-colour disc blackbody, a power-law component, and an absorption line at ~1.4 keV. The ~1.4 keV feature is curious given that it was not detected in previous observations, and its presence could be related to the strength of the soft-excess. Of further interest is curvature in the spectrum above ~2 keV which can be described by a strong reflection component. The strong reflection component, lack of high-energy temporal variability, and extreme radiative efficiency measurements can be understood if we consider gravitational light bending effects close to a maximally rotating black hole.
PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of
We present near-infrared spectroscopy of the NLS1 galaxy PHL1092 (z=0.394), the strongest FeII emitter ever reported, combined with optical and UV data. We modeled the continuum and the broad emission lines using a power-law plus a black body functio
One of the puzzles in understanding the spectra of active galactic nuclei (AGN) is the origin of the FeII emission. FeI emission, if present, will help reveal the physical conditions of the emitting gas. In an attempt to verify the presence of FeI li
The origin of soft X-ray excess emission from type 1 active galactic nuclei has remained a major problem for the last two decades. It has not been possible to distinguish alternative models for the soft excess emission despite the excellent data qual
Narrow-line Seyfert 1 galaxies (NLS1s) exhibit extreme soft X-ray excess and large variability. We argue that both features can be basically accounted for by the slim disk model. We assume that a central black-hole mass in NLS1 is relatively small, $