ﻻ يوجد ملخص باللغة العربية
Determination of the star formation rate can be done using mid-IR photometry or Balmer line luminosity after a proper correction for extinction effects. Both methods show convergent results while those based on UV or on [OII]3727 luminosities underestimate the SFR by factors ranging from 5 to 40 for starbursts and for luminous IR galaxies, respectively. Most of the evolution of the cosmic star formation density is related to the evolution of luminous compact galaxies and to luminous IR galaxies. Because they were metal deficient and were forming stars at very high rates (40 to 100 solar mass per year), it is probable that these (massive) galaxies were actively forming the bulk of their stellar/metal content at z < 1.
(abbreviated) We present the first results of the ESO large program, ``IMAGES which aims at obtaining robust measurements of the kinematics of distant galaxies using the multi-IFU mode of GIRAFFE on the VLT. 3D spectroscopy is essential to robustly m
We present results of a statistical study of the cosmic evolution of the mass dependent major-merger rate since z=1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair
The infrared (IR) emission of M_* galaxies (10^{10.4} < M_{star} < 10^{11.0} M_sun) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single disk galaxies in well matched cont
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cov
A large fraction of the stellar mass in galaxy clusters is thought to be contained in the diffuse low surface brightness intracluster light (ICL). Being bound to the gravitational potential of the cluster rather than any individual galaxy, the ICL co