ﻻ يوجد ملخص باللغة العربية
He I 10830 profiles acquired with Kecks NIRSPEC for 6 young low mass stars with high disk accretion rates (AS 353A, DG Tau, DL Tau, DR Tau, HL Tau and SVS 13) provide new insight into accretion-driven winds. In 4 stars the profiles have the signature of resonance scattering, and possess a deep and broad blueshifted absorption that penetrates more than 50% into the 1 micron continuum over a continuous range of velocities from near the stellar rest velocity to the terminal velocity of the wind, unlike inner wind signatures seen in other spectral features. This deep and broad absorption provides the first observational tracer of the acceleration region of the inner wind and suggests that this acceleration region is situated such that it occults a significant portion of the stellar disk. The remaining 2 stars also have blue absorption extending below the continuum although here the profiles are dominated by emission, requiring an additional source of helium excitation beyond resonant scattering. This is likely the same process that produces the emission profiles seen at He I 5876.
We probe the geometry of magnetospheric accretion in classical T Tauri stars by modeling red absorption at He I 10830 via scattering of the stellar and veiling continua. Under the assumptions that the accretion flow is an azimuthally symmetric dipole
We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopi
Aims. We aim to explain line formation of He I D3 and He I 10830 {AA} in small-scale reconnection events. Methods. We make use of a simulated Ellerman bomb (EB), present in a Bifrost-generated radiative Magnetohydrodynamics (rMHD) snapshot. The resul
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the stars mass and radius as it descends the Hayashi track, a