ترغب بنشر مسار تعليمي؟ اضغط هنا

Counts of Low-redshift SDSS Quasar Candidates

37   0   0.0 ( 0 )
 نشر من قبل Zeljko Ivezic
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the counts of low-redshift quasar candidates selected using nine-epoch SDSS imaging data. The co-added catalogs are more than 1 mag deeper than single-epoch SDSS data, and allow the selection of low-redshift quasar candidates using UV-excess and also variability techniques. The counts of selected candidates are robustly determined down to g=21.5. This is about 2 magnitudes deeper than the position of a change in the slope of the counts reported by Boyle et al. (1990, 2000) for a sample selected by UV-excess, and questioned by Hawkins & Veron (1995), who utilized a variability-selected sample. Using SDSS data, we confirm a change in the slope of the counts for both UV-excess and variability selected samples, providing strong support for the Boyle et al. results.

قيم البحث

اقرأ أيضاً

Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called ``jellyfish galaxies, that exhibit tentacles of debris material with a characteristic jel lyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z=0.04-0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses. Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion sigma or X-ray luminosity L_X. Interestingly, convincing cases of candidates are also found in groups and lower mass haloes (10^{11}-10^{14} M_{sun}), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M_{sun} < 9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5 sigma) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that the stripping phenomenon is ubiquitous in clusters and could be present even in groups and low mass haloes. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.
63 - Brian C. Lacki 2008
Difference imaging provides a new way to discover gravitationally lensed quasars because few non-lensed sources will show spatially extended, time variable flux. We test the method on lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova S urvey region from the SDSS Quasar Lens Search (SQLS) and their surrounding fields. Starting from 20768 sources, including 49 SDSS quasars and 36 candidate lenses/lensed images, we find that 21 sources including 15 SDSS QSOs and 7 candidate lenses/lensed images are non-periodic variable sources. We can measure the spatial structure of the variable flux for 18 of these sources and identify only one as a non-point source. This source does not display the compelling spatial structure of the variable flux of known lensed quasars, so we reject it as a lens candidate. None of the lens candidates from the SQLS survive our cuts. Given our effective survey area of order 0.71 square degrees, this indicates a false positive rate of order one per square degree for themethod. The fraction of quasars not found to be variable and the false positive rate should both fall if we analyze the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will avoid these limitations.
The present paper analyses the quasar clustering using the two-point correlation function (2pCF) and the largest existing sample of photometrically selected quasars: the SDSS NBCKDE catalogue (from the SDSS DR6). A new technique of random catalogue g eneration was developed for this purpose, that allows to take into account the original homogeneity of the survey without knowledge of its imaging mask. When averaged over photometrical redshifts 0.8<z_phot<2.2 the 2pCF of photometrically selected quasars is found to be approximated well with the power law w(theta)=(theta/theta_0)^{-alpha} with theta_0=4.5+/-1.4, alpha=0.94+/-0.06 over the range 1<theta<40. It agrees well with previous results by Myers et al. (2006,2007), obtained for samples of NBCKDE quasars with similar mean z_phot, but averaged over broader z_phot range. The parameters of the deprojected 2pCF averaged over the same z_phot range and modelled with a power law xi(r)=(r/r_0)^{-gamma}, are r_0=7.81^{+1.18}_{-1.16} Mpc/h, gamma=1.94+/-0.06, which are in perfect agreement with previous results from spectroscopic surveys. We confirm the evidence for an increase of the clustering amplitude with z, and find no evidence for luminosity dependence of the quasar clustering. The latter is consistent with the models of the quasar formation, in which bright and faint quasars are assumed to be similar sources, hosted by dark matter halos of similar masses, but observed at different stages of their evolution. Comparison of our results with studies of the X-ray selected AGNs with similar z shows that the clustering amplitude of optically selected quasars is similar to that of X-ray selected quasars, but lower than that of samples of all X-ray selected AGNs. As the samples of all X-ray selected AGNs contain AGNs of both types, our result serves as an evidence for different types of AGNs to reside in different environments.
We present photometry of the large scale environments of a sample of twelve broad line AGN with $0.06 < z < 0.37$ from deep images in the SDSS $u$, $g$, $r$, and $i$ filters taken with the 90Prime prime focus camera on the Steward Observatory Bok Tel escope. We measure galaxy clustering around these AGN using two standard techniques: correlation amplitude (B$_{gq}$) and the two point correlation function. We find average correlation amplitudes for the 10 radio quiet objects in the sample equal to (9$pm$18, 144$pm$114, -39$pm$56, 295$pm$260) Mpc$^{1.77}$ in ($u$, $g$, $r$, $i$), all consistent with the expectation from galaxy clustering. Using a ratio of the galaxy-quasar cross-correlation function to the galaxy autocorrelation function, we calculate the relative bias of galaxies and AGN, $b_{gq}$. The bias in the $u$ band, $b_{gq}=3.08pm0.51$ is larger compared to that calculated in the other bands, but it does not correlate with AGN luminosity, black hole mass, or AGN activity via the luminosity of the [OIII] emission line. Thus ongoing nuclear accretion activity is not reflected in the large scale environments from $sim$10 h$^{-1}$ kpc to $sim$0.5 h$^{-1}$ Mpc and may indicate a non-merger mode of AGN activity and/or a significant delay between galaxy mergers and nuclear activity in this sample of mostly radio quiet quasars.
We report exploratory chandra observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. The quasar is clearly detected by chandra with a possible component of extended emission. The rest-frame 2-10 keV luminosity is 9.0$^{+9. 1}_{-4.5}$ $times$ 10$^{45}$ erg s$^{-1}$ with inferred photon index of $Gamma$ = 3.03$^{+0.78}_{-0.70}$. This quasar is X-ray bright, with inferred X-ray-to-optical flux ratio aox $=-1.22^{+0.07}_{-0.05}$, higher than the values found in other quasars of comparable ultraviolet luminosity. The properties inferred from this exploratory observation indicate that this ultraluminous quasar might be growing with super-Eddington accretion and probably viewed with small inclination angle. Deep X-ray observation will help to probe the plausible extended emission and better constraint the spectral features for this ultraluminous quasar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا