ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Optics in Star Formation

78   0   0.0 ( 0 )
 نشر من قبل Wolfgang Brandner
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Wolfgang Brandner




اسأل ChatGPT حول البحث

Over the past ten years, the concept of adaptive optics has evolved from early experimental stages to a standard observing tool now available at almost all major optical and near-infrared telescope facilities. Adaptive optics will also be essential in exploiting the full potential of the large optical/infrared interferometers currently under construction. Both observations with high-angular resolution and at high contrast, and with a high point source sensitivity are facilitated by adaptive optics. Among the areas which benefit most from the use of adaptive optics are studies of the circumstellar environment (envelopes, disks, outflows), substellar companions and multiple systems, and dense young stellar populations. This contribution highlights some of the recent advances in star formation studies facilitated by adaptive optics, and gives a brief tutorial on optimized observing and data reduction strategies.



قيم البحث

اقرأ أيضاً

319 - G. Cresci 2004
We present adaptive optics assisted spectroscopy of three quasars obtained with NACO at VLT. The high angular resolution achieved with the adaptive optics (~0.08), joined to the diagnostic power of near-IR spectroscopy, allow us to investigate the pr operties of the innermost 100 pc of these quasars. In the quasar with the best adaptive optics correction, PG1126-041, we spatially resolve the Pa-alpha emission within the nuclear 100 pc. The comparison with higher excitation lines suggests that the narrow Pa-alpha emission is due to nuclear star formation. The inferred intensity of the nuclear star formation (13 M(sun)/yr) may account for most of the far-IR luminosity observed in this quasar.
141 - Stuart D. Ryder 2014
Using the latest generation of adaptive optics imaging systems together with laser guide stars on 8m-class telescopes, we are finally revealing the previously-hidden population of supernovae in starburst galaxies. Finding these supernovae and measuri ng the amount of absorption due to dust is crucial to being able to accurately trace the star formation history of our Universe. Our images of the host galaxies are amongst the sharpest ever obtained from the ground, and reveal much about how and why these galaxies are forming massive stars (that become supernovae) at such a prodigious rate.
84 - E. Furlan 2003
With high-angular-resolution, near-infrared observations of the young stellar object T Tauri at the end of 2002, we show that, contrary to previous reports, none of the three infrared components of T Tau coincide with the compact radio source that ha s apparently been ejected recently from the system (Loinard, Rodriguez, and Rodriguez 2003). The compact radio source and one of the three infrared objects, T Tau Sb, have distinct paths that depart from orbital or uniform motion between 1997 and 2000, perhaps indicating that their interaction led to the ejection of the radio source. The path that T Tau Sb took between 1997 and 2003 may indicate that this star is still bound to the presumably more massive southern component, T Tau Sa. The radio source is absent from our near-infrared images and must therefore be fainter than K = 10.2 (if located within 100 mas of T Tau Sb, as the radio data would imply), still consistent with an identity as a low-mass star or substellar object.
An explanation for the origin of asymmetry along the preferential axis of the PSF of an AO system is developed. When phase errors from high altitude turbulence scintillate due to Fresnel propagation, wavefront amplitude errors may be spatially offset from residual phase errors. These correlated errors appear as asymmetry in the image plane under the Fraunhofer condition. In an analytic model with an open-loop AO system, the strength of the asymmetry is calculated for a single mode of phase aberration, which generalizes to two dimensions under a Fourier decomposition of the complex illumination. Other parameters included are the spatial offset of the AO correction, which is the wind velocity in the frozen flow regime multiplied by the effective AO time delay, and propagation distance or altitude of the turbulent layer. In this model, the asymmetry is strongest when the wind is slow and nearest to the coronagraphic mask when the turbulent layer is far away, such as when the telescope is pointing low towards the horizon. A great emphasis is made about the fact that the brighter asymmetric lobe of the PSF points in the opposite direction as the wind, which is consistent analytically with the clarification that the image plane electric field distribution is actually the inverse Fourier transform of the aperture plane. Validation of this understanding is made with observations taken from the Gemini Planet Imager, as well as being reproducible in end-to-end AO simulations.
We describe several projects addressing the growth of galaxies and massive black holes, for which adaptive optics is mandatory to reach high spatial resolution but is also a challenge due to the lack of guide stars and long integrations. In each case kinematics of the stars and gas, derived from integral field spectroscopy, plays a key role. We explain why deconvolution is not an option, and that instead the PSF is used to convolve a physical model to the required resolution. We discuss the level of detail with which the PSF needs to be known, and the ways available to derive it. We explain how signal-to-noise can limit the resolution achievable and show there are many science cases that require high, but not necessarily diffraction limited, resolution. Finally, we consider what requirements astrometry and photometry place on adaptive optics performance and design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا