ﻻ يوجد ملخص باللغة العربية
A review of spectroscopic results obtained from Chandra High Energy Transmission Grating Spectrometer and XMM-Newton Reflection Grating Spectrometer observations of several wind-fed high-mass X-ray binaries (HMXBs) is presented. These observations allow us to study the structure of the stellar wind in more detail and provide, for the first time, a dyanmical view of the X-ray photoionized wind that surrounds the compact object. At the same time, however, they are also providing us with numerous puzzles that cannot be explained in terms of simple models. For example, simple spherically-symmetric wind models cannot explain the observed orbital-phase variability of the line intensities and shapes, which may be caused by intrinsic asymmetries due to the presence of the compact object and/or more complicated radiative transfer effects. The observed line shifts are smaller than those expected from extensions of simple wind models of isolated OB supergiants. In addition, several novel spectroscopic discoveries have been made, including: (1) P-Cygni lines from an expanding wind, (2) detection of multiple Si K fluorescent lines from a wide range of charge states, (3) Compton scattered Fe K lines from a cold medium. We discuss how these spectroscopic diagnostics can be used to understand some of the global properties of stellar winds in HMXBs.
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying prope
We have developed a stellar wind model for OB supergiants to investigate the effects of accretion from a clumpy wind on the luminosity and variability properties of High Mass X-ray Binaries. Assuming that the clumps are confined by ram pressure of th
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of high-mass X-ray binaries and ultra-luminous X-ray sources. For a summary, we refer to the paper.
From hot, tenuous gas dominated by Compton processes, to warm, photoionized emission-line regions, to cold, optically thick fluorescing matter, accreting gas flows in X-ray binaries span a huge portion of the parameter space accessible to astrophysic
Massive stars, at least $sim$ 10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so