ترغب بنشر مسار تعليمي؟ اضغط هنا

0103-72.6: A New Oxygen-Rich Supernova Remnant in the Small Magellanic Cloud

144   0   0.0 ( 0 )
 نشر من قبل Sangwook Park
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sangwook Park




اسأل ChatGPT حول البحث

0103$-$72.6, the second brightest X-ray supernova remnant (SNR) in the Small Magellanic Cloud (SMC), has been observed with the {it Chandra X-Ray Observatory}. Our {it Chandra} observation unambiguously resolves the X-ray emission into a nearly complete, remarkably circular shell surrounding bright clumpy emission in the center of the remnant. The observed X-ray spectrum for the central region is evidently dominated by emission from reverse shock-heated metal-rich ejecta. Elemental abundances in this ejecta material are particularly enhanced in oxygen and neon, while less prominent in the heavier elements Si, S, and Fe. We thus propose that 0103$-$72.6 is a new ``oxygen-rich SNR, making it only the second member of the class in the SMC. The outer shell is the limb-brightened, soft X-ray emission from the swept-up SMC interstellar medium. The presence of O-rich ejecta and the SNRs location within an H{small II} region attest to a massive star core-collapse origin for 0103$-$72.6. The elemental abundance ratios derived from the ejecta suggest an $sim$18 M$_{odot}$ progenitor star.

قيم البحث

اقرأ أيضاً

The high sensitivity of the XMM-Newton instrumentation offers the opportunity to study faint and extended sources in the Milky Way and nearby galaxies such as the Large Magellanic Cloud (LMC) in detail. The ROSAT PSPC survey of the LMC has revealed m ore than 700 X-ray sources, among which there are 46 supernova remnants (SNRs) and candidates. We have observed the field around one of the most promising SNR candidates in the ROSAT PSPC catalogue, labelled [HP99] 456 with XMM-Newton, to determine its nature. We investigated the XMM-Newton data along with new radio-continuum, near infrared and optical data. In particular, spectral and morphological studies of the X-ray and radio data were performed. The X-ray images obtained in different energy bands reveal two different structures. Below 1.0 keV the X-ray emission shows the shell-like morphology of an SNR with a diameter of ~73 pc, one of the largest known in the LMC. For its thermal spectrum we estimate an electron temperature of (0.49 +/- 0.12)keV assuming non-equilibrium ionisation. The X-ray images above 1.0 keV reveal a less extended source within the SNR emission, located ~1 west of the centre of the SNR and coincident with bright point sources detected in radio-continuum. This hard component has an extent of 0.9 (i.e. ~13 pc at a distance of ~50 kpc) and a non-thermal spectrum. The hard source coincides in position with the ROSAT source [HP99] 456 and shows an indication for substructure. We firmly identify a new SNR in the LMC with a shell-like morphology and a thermal spectrum. Assuming the SNR to be in the Sedov phase yields an age of ~23 kyr. We explore possible associations of the hard non-thermal emitting component with a pulsar wind nebula (PWN) or background active galactic nuclei (AGN).
We present a detailed radio, X-ray and optical study of a newly discovered Large Magellanic Cloud (LMC) supernova remnant (SNR) which we denote MCSNR J0508-6902. Observations from the Australian Telescope Compact Array (ATCA) and the $textit{XMM-Newt on}$ X-ray observatory are complemented by deep H$alpha$ images and Anglo Australian Telescope AAOmega spectroscopic data to study the SNR shell and its shock-ionisation. Archival data at other wavelengths are also examined. The remnant follows a filled-in shell type morphology in the radio-continuum and has a size of $sim$74 pc $times$ 57 pc at the LMC distance. The X-ray emission exhibits a faint soft shell morphology with Fe-rich gas in its interior $-$ indicative of a Type Ia origin. The remnant appears to be mostly dissipated at higher radio-continuum frequencies leaving only the south-eastern limb fully detectable while in the optical it is the western side of the SNR shell that is clearly detected. The best-fit temperature to the shell X-ray emission ($kT = 0.41^{+0.05}_{-0.06}$ keV) is consistent with other large LMC SNRs. We determined an O/Fe ratio of $<21$ and an Fe mass of 0.5-1.8$~M_{odot}$ in the interior of the remnant, both of which are consistent with the Type Ia scenario. We find an equipartition magnetic field for the remnant of $sim$28 $mu$G, a value typical of older SNRs and consistent with other analyses which also infer an older remnant.
We report the discovery of a new Small Magellanic Cloud Pulsar Wind Nebula (PWN) at the edge of the Supernova Remnant (SNR)-DEM S5. The pulsar powered object has a cometary morphology similar to the Galactic PWN analogs PSR B1951+32 and the mouse. It is travelling supersonically through the interstellar medium. We estimate the Pulsar kick velocity to be in the range of 700-2000 km/s for an age between 28-10 kyr. The radio spectral index for this SNR PWN pulsar system is flat (-0.29 $pm$ 0.01) consistent with other similar objects. We infer that the putative pulsar has a radio spectral index of -1.8, which is typical for Galactic pulsars. We searched for dispersion measures (DMs) up to 1000 cm/pc^3 but found no convincing candidates with a S/N greater than 8. We produce a polarisation map for this PWN at 5500 MHz and find a mean fractional polarisation of P $sim 23$ percent. The X-ray power-law spectrum (Gamma $sim 2$) is indicative of non-thermal synchrotron emission as is expected from PWN-pulsar system. Finally, we detect DEM S5 in Infrared (IR) bands. Our IR photometric measurements strongly indicate the presence of shocked gas which is expected for SNRs. However, it is unusual to detect such IR emission in a SNR with a supersonic bow-shock PWN. We also find a low-velocity HI cloud of $sim 107$ km/s which is possibly interacting with DEM S5. SNR DEM S5 is the first confirmed detection of a pulsar-powered bow shock nebula found outside the Galaxy.
We present a serendipitous detection of the infrared-bright supernova remnant (SNR) B0104-72.3 in the Small Magellanic Cloud by the Infrared Camera (IRC) onboard AKARI. An elongated, partially complete shell is detected in all four observed IRC bands covering 2.6-15 um. The infrared shell surrounds radio, optical, and X-ray emission associated with the SNR and is probably a radiative SNR shell. This is the first detection of a SNR shell in this near/mid-infrared waveband in the Small Magellanic Cloud. The IRC color indicates that the infrared emission might be from shocked H2 molecules with some possible contributions from ionic lines. We conclude that B0104-72.3 is a middle-aged SNR interacting with molecular clouds, similar to the Galactic SNR IC 443. Our results highlight the potential of AKARI IRC observations in studying SNRs, especially for diagnosing SNR shocks.
235 - John P. Hughes 2003
We report the discovery of pulsed X-ray emission from the compact object CXOU J112439.1-591620 within the supernova remnant (SNR) G292.0+1.8 using the High Resolution Camera on the Chandra X-ray Observatory. The X-ray period (P=0.13530915 s) is consi stent with extrapolation of the radio pulse period of PSR J1124-5916 for a spindown rate of dP/dt=7.6E-13 s/s. The X-ray pulse is single peaked and broad with a FWHM width of 0.23P (83 degrees). The pulse-averaged X-ray spectral properties of the pulsar are well described by a featureless power law model with an absorbing column density, N_H= 3.1E21 atoms/cm^2; photon index, gamma = 1.6; and unabsorbed 0.3-10 keV band luminosity, L_X = 7.2E32 erg/s. We plausibly identify the location of the pulsars termination shock. Pressure balance between the pulsar wind and the larger synchrotron nebula, as well as lifetime issues for the X-ray-emitting electrons, argues for a particle- dominated PWN that is far from the minimum energy condition. Upper limits on the surface temperature of the neutron star are at, or slightly below, values expected from ``standard cooling curves. There is no optical counterpart to the new pulsar; its optical luminosity is at least a factor of 5 below that of the Crab pulsar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا